We present results from a direct photon pair search performed with the NA3 spectrometer, using incident positive and negative beams at 200 GeV/ c interacting with a carbon target. The experiment is sensitive to photons with p T >1.8 GeV / c and −0.4⩽y ∗ ⩽1.0 , one in each arm of the apparatus. A 3 standard deviation signal is seen in τ − and p interactions. The cross section is higher than the second order QCD calculations, but systematic errors are large.
No description provided.
The polarization in p-Be and p-p scattering has been measured by counter techniques at a proton kinetic energy of 1.74 GeV. The maximum polarization in p-Be scattering was found to beP max==0.19±0.04 and occurs at an angleθ max⩾3.5°. Inelastic scatters were rejected when the inelastic momentum loss was more than about 1% in the first scatter (magnetic analysis) or more than about 5% in the second scatter (Čerenkov threshold counter). The maximum polarization in p-p scattering isP max=0.30±0.09 and occurs at an angle 35°<θ max<<55° (c.m.). The angular dependence of the polarization is consistent with a distribution proportional to sin 2θ within large statistical errors. Optical model calculations applied to the data on p-Be scattering yield an almost all imaginary central potential of about 43 MeV and a spin-orbit potential of between 0.9 MeV and 2.0 MeV which is also almost all imaginary, in contrast with the predominantly real spin-orbit potential needed to explain the large polarization in the region of several hundred MeV.
'1'. '2'. '3'. '4'.
'1'. '2'. '3'. '5'.
Direct photon production has been studied by an experiment performed with the NA3 spectrometer at CERN, using incident negative and positive beams at 200 GeV/c interacting with an isoscalar Carbon target. Two different triggers have been used; one of them requires the photon conversion. The experiment is sensitive to direct photons produced with 3.0≦PT≦6 GeV/c and center-of-mass rapidity −0.4≦y*≦1.2. Inclusive cross sections are given for incident π± and protons, and compared with second order QCD predictions; finally an estimation of the gluon structure function of the nucleon is given.
Data from conversion trigger. Statistical errors only.
Data from calorimeter trigger. Statistical errors only.
We have measured the inclusive cross-section for π0 production at large transverse momentum by 200 GeV/c positive and negative hadron beams on Carbon targets (2.9
CONVERSION TRIGGER SELECTION.
CALORIMETER TRIGGER SELECTION.
Measurements of π±p elastic differential cross-sections have been performed in the forward direction, using a missing-mass spark chamber spectrometer. The films have been seanned by an automatic apparatus. A phase-shift analysis of the experimental data has been done, leading to three solutions. Various experiments are proposed in order to resolve the ambiguities.
No description provided.
No description provided.
No description provided.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test
The measured jet broadening distributions (B) in quark and gluon jets seperately.
Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.
The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.
Analyzing powers ( A y ) and spin-rotation-depolarization parameters ( D SS , D SL , D LS , D LL , D NN ) were determined for 500 MeV p + 2 H and p + 12 C inclusive quasielastic scattering at 10°, 15°, and 20° laboratory scattering angles. The p + 2 H data are consistent with the isospin-average of the proton-proton and proton-neutron scattering observables; the p + 12 C data are not. A relativistic plane wave impulse approximation calculation leads to better agreement with the p + 12 C spin-observables.
Inclusive quasielastic p deut measurements.
Inclusive quasielastic p c measurements.
Differential cross sections for elastic π−p scattering were measured at eight energies for positive pions and seven energies for negative pions. Energies ranged from 310 to 650 MeV. These measurements were made at the 3-GeV proton synchrotron at Saclay, France. A beam of pions from an internal BeO target was directed into a liquid-hydrogen target. Fifty-one scintillation counters and a matrix-coincidence system were used to measure simultaneously elastic events at 21 angles and charged inelastic events at 78 π−p angle pairs. Events were detected by coincidence of pulses indicating the presence of an incident pion, scattered pion, and recoil proton, and the results were stored in the memory of a pulse-height analyzer. Various corrections were applied to the data and a least-squares fit was made to the results at each energy. The form of the fitting function was a power series in the cosine of the center-of-mass angle of the scattered pion. Integration under the fitted curves gave values for the total elastic cross sections (without charge exchange). The importance of certain angular-momentum states is discussed. The π−−p data are consistent with a D13 resonant state at 600 MeV, but do not necessarily require such a resonant state.
No description provided.
No description provided.
No description provided.
We report on a measurement of the ratio of the differential cross sections for W and Z boson production as a function of transverse momentum in proton-antiproton collisions at sqrt(s) = 1.8 TeV. This measurement uses data recorded by the D0 detector at the Fermilab Tevatron in 1994-1995. It represents the first investigation of a proposal that ratios between W and Z observables can be calculated reliably using perturbative QCD, even when the individual observables are not. Using the ratio of differential cross sections reduces both experimental and theoretical uncertainties, and can therefore provide smaller overall uncertainties in the measured mass and width of the W boson than current methods used at hadron colliders.
The measured W and Z0 cross sections used to compute the ratio.
The measured ratios of W+-/Z0 cross sections, corrected for the branching ratios BR(W-->e-nue)=0.1073+-0.0025 and BR(Z0-->E+E-)=0.033632+-0.000059 (PDG 2000). The error given is the total error, but note that the 4.3pct error in the luminosity cancels completely in the ratio.