Version 2
A measurement of soft-drop jet observables in $pp$ collisions with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 052007, 2020.
Inspire Record 1772062 DOI 10.17182/hepdata.92073

Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.

252 data tables match query

Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 6b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 6c. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

More…

Measurement of $W^{\pm}$-boson and $Z$-boson production cross-sections in $pp$ collisions at $\sqrt{s}=2.76$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 901, 2019.
Inspire Record 1742785 DOI 10.17182/hepdata.91267

The production cross-sections for $W^{\pm}$ and $Z$ bosons are measured using ATLAS data corresponding to an integrated luminosity of 4.0 pb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}=2.76$ TeV. The decay channels $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell $ are used, where $\ell$ can be an electron or a muon. The cross-sections are presented for a fiducial region defined by the detector acceptance and are also extrapolated to the full phase space for the total inclusive production cross-section. The combined (average) total inclusive cross-sections for the electron and muon channels are: \begin{eqnarray} \sigma^{\text{tot}}_{W^{+}\rightarrow \ell \nu}& = & 2312 \pm 26\ (\text{stat.})\ \pm 27\ (\text{syst.}) \pm 72\ (\text{lumi.}) \pm 30\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{W^{-}\rightarrow \ell \nu}& = & 1399 \pm 21\ (\text{stat.})\ \pm 17\ (\text{syst.}) \pm 43\ (\text{lumi.}) \pm 21\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{Z \rightarrow \ell \ell}& = & 323.4 \pm 9.8\ (\text{stat.}) \pm 5.0\ (\text{syst.}) \pm 10.0\ (\text{lumi.}) \pm 5.5 (\text{extr.}) \text{pb} \nonumber. \end{eqnarray} Measured ratios and asymmetries constructed using these cross-sections are also presented. These observables benefit from full or partial cancellation of many systematic uncertainties that are correlated between the different measurements.

28 data tables match query

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nu final state.

More…

Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 124 (2020) 222002, 2020.
Inspire Record 1790256 DOI 10.17182/hepdata.93183

The prevalence of hadronic jets at the LHC requires that a deep understanding of jet formation and structure is achieved in order to reach the highest levels of experimental and theoretical precision. There have been many measurements of jet substructure at the LHC and previous colliders, but the targeted observables mix physical effects from various origins. Based on a recent proposal to factorize physical effects, this Letter presents a double-differential cross-section measurement of the Lund jet plane using 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected with the ATLAS detector using jets with transverse momentum above 675 GeV. The measurement uses charged particles to achieve a fine angular resolution and is corrected for acceptance and detector effects. Several parton shower Monte Carlo models are compared with the data. No single model is found to be in agreement with the measured data across the entire plane.

36 data tables match query

Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties

Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for use in MC tuning.

Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 0.00 < ln(R/#DeltaR) < 0.33.

More…

A simultaneous unbinned differential cross section measurement of twenty-four $Z$+jets kinematic observables with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 133 (2024) 261803, 2024.
Inspire Record 2791852 DOI 10.17182/hepdata.153189

$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.

26 data tables match query

Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

More…

Version 2
Properties of jet fragmentation using charged particles measured with the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 100 (2019) 052011, 2019.
Inspire Record 1740909 DOI 10.17182/hepdata.89321

This paper presents a measurement of quantities related to the formation of jets from high-energy quarks and gluons (fragmentation). Jets with transverse momentum 100 GeV $<p_T<$ 2.5 TeV and pseudorapidity $|\eta| < 2.1$ from an integrated luminosity of 33 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions are reconstructed with the ATLAS detector at the Large Hadron Collider. Charged-particle tracks with $p_T > 500$ MeV and $|\eta| < 2.5$ are used to probe the detailed structure of the jet. The fragmentation properties of the more forward and the more central of the two leading jets from each event are studied. The data are unfolded to correct for detector resolution and acceptance effects. Comparisons with parton shower Monte Carlo generators indicate that existing models provide a reasonable description of the data across a wide range of phase space, but there are also significant differences. Furthermore, the data are interpreted in the context of quark- and gluon-initiated jets by exploiting the rapidity dependence of the jet flavor fraction. A first measurement of the charged-particle multiplicity using model-independent jet labels (topic modeling) provides a promising alternative to traditional quark and gluon extractions using input from simulation. The simulations provide a reasonable description of the quark-like data across the jet $p_T$ range presented in this measurement, but the gluon-like data have systematically fewer charged particles than the simulations.

188 data tables match query

$\langle n_{ch} \rangle$, forward jet.

$\langle n_{ch} \rangle$, central jet.

$\langle \zeta \rangle$, forward jet.

More…

Measurement of isolated-photon plus two-jet production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 03 (2020) 179, 2020.
Inspire Record 1772071 DOI 10.17182/hepdata.101751

The dynamics of isolated-photon plus two-jet production in $pp$ collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Cross sections are measured as functions of a variety of observables, including angular correlations and invariant masses of the objects in the final state, $\gamma+jet+jet$. Measurements are also performed in phase-space regions enriched in each of the two underlying physical mechanisms, namely direct and fragmentation processes. The measurements cover the range of photon (jet) transverse momenta from 150 GeV (100 GeV) to 2 TeV. The tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as the next-to-leading-order QCD predictions from SHERPA are compared with the measurements. The next-to-leading-order QCD predictions describe the data adequately in shape and normalisation except for regions of phase space such as those with high values of the invariant mass or rapidity separation of the two jets, where the predictions overestimate the data.

27 data tables match query

Measured cross sections for isolated-photon plus two-jet production as functions of $E_{\mathrm{T}}^{\gamma}$ for the total phase-space. The predictions from Sherpa NLO are also included.

Measured cross sections for isolated-photon plus two-jet production as functions of $p_{\mathrm{T}}^{\textrm{jet}}$ for the total phase-space. The predictions from Sherpa NLO are also included.

Measured cross sections for isolated-photon plus two-jet production as functions of $|y^{\textrm{jet}}|$ for the total phase-space. The predictions from Sherpa NLO are also included.

More…

Measurements of multijet event isotropies using optimal transport with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 10 (2023) 060, 2023.
Inspire Record 2663035 DOI 10.17182/hepdata.110164

A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.

75 data tables match query

IRing2 for HT2>=500 GeV, NJets>=2

IRing2 for HT2>=500 GeV, NJets>=3

IRing2 for HT2>=500 GeV, NJets>=4

More…

Underlying-event studies with strange hadrons in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 84 (2024) 1335, 2024.
Inspire Record 2784422 DOI 10.17182/hepdata.146740

Properties of the underlying-event in $pp$ interactions are investigated primarily via the strange hadrons $K_{S}^{0}$, $\Lambda$ and $\bar\Lambda$, as reconstructed using the ATLAS detector at the LHC in minimum-bias $pp$ collision data at $\sqrt{s} = 13$ TeV. The hadrons are reconstructed via the identification of the displaced two-particle vertices corresponding to the decay modes $K_{S}^{0}\rightarrow\pi^+\pi^-$, $\Lambda\rightarrow\pi^-p$ and $\bar\Lambda\rightarrow\pi^+\bar{p}$. These are used in the construction of underlying-event observables in azimuthal regions computed relative to the leading charged-particle jet in the event. None of the hadronisation and underlying-event physics models considered can describe the data over the full kinematic range considered. Events with a leading charged-particle jet in the range of $10 < p_T \leq 40$ GeV are studied using the number of prompt charged particles in the transverse region. The ratio $N(\Lambda + \bar\Lambda)/N(K_{S}^{0})$ as a function of the number of such charged particles varies only slightly over this range. This disagrees with the expectations of some of the considered Monte Carlo models.

46 data tables match query

Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$

Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$

Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the transverse region vs. leading-jet $p_{T}$

More…

Measurements of top-quark pair differential and double-differential cross-sections in the $\ell$+jets channel with $pp$ collisions at $\sqrt{s}=13$ TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 1028, 2019.
Inspire Record 1750330 DOI 10.17182/hepdata.95758

Single- and double-differential cross-section measurements are presented for the production of top-quark pairs, in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and $t\bar{t}$ system and jet multiplicities. The study was performed using data from $pp$ collisions at centre-of-mass energy of 13 TeV collected in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider (LHC), corresponding to an integrated luminosity of $36~\mathrm{fb}^{-1}$. Due to the large $t\bar{t}$ cross-section at the LHC, such measurements allow a detailed study of the properties of top-quark production and decay, enabling precision tests of several Monte Carlo generators and fixed-order Standard Model predictions. Overall, there is good agreement between the theoretical predictions and the data.

308 data tables match query

Relative differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.

Absolute differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.

Relative differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.

More…

Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 100 (2019) 052013, 2019.
Inspire Record 1739784 DOI 10.17182/hepdata.90193

A search for a heavy charged-boson resonance decaying into a charged lepton (electron or muon) and a neutrino is reported. A data sample of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC during 2015-2018 is used in the search. The observed transverse mass distribution computed from the lepton and missing transverse momenta is consistent with the distribution expected from the Standard Model, and upper limits on the cross section for $pp \to W^\prime \to \ell\nu$ are extracted ($\ell = e$ or $\mu$). These vary between 1.3 pb and 0.05 fb depending on the resonance mass in the range between 0.15 and 7.0 TeV at 95% confidence level for the electron and muon channels combined. Gauge bosons with a mass below 6.0 TeV and 5.1 TeV are excluded in the electron and muon channels, respectively, in a model with a resonance that has couplings to fermions identical to those of the Standard Model $W$ boson. Cross-section limits are also provided for resonances with several fixed $\Gamma / m$ values in the range between 1% and 15%. Model-independent limits are derived in single-bin signal regions defined by a varying minimum transverse mass threshold. The resulting visible cross-section upper limits range between 4.6 (15) pb and 22 (22) ab as the threshold increases from 130 (110) GeV to 5.1 (5.1) TeV in the electron (muon) channel.

14 data tables match query

Transverse mass distribution for events satisfying all selection criteria in the electron channel.

Transverse mass distribution for events satisfying all selection criteria in the muon channel.

Upper limits at the 95% CL on the cross section for SSM $W^\prime$ production and decay to the electron+neutrino channel as a function of the $W^\prime$ pole mass.

More…