We have examined the inclusive production of nonstrange particle resonances in νp interactions using the Fermilab 15-ft bubble chamber. A sample of 2437 charged-current events with visible longitudinal momentum greater than 10 GeV/c was obtained. The ρ0 and Δ++(1232) are seen. An overall rate of 0.21±0.04 ρ0 per event is found. For five-prong events, the rate is 0.44±0.08 ρ0 per event. The ρ0Z distribution falls rapidly for Z greater than 0.4. The production of Δ++ is seen clearly in events with an identified proton. No evidence is seen for Δ0 production. An upper limit of 0.34 is placed on the ratio of ηπ0 (90% confidence level).
NO CLEAR DEL0 SIGNAL.
Using data from the Fermilab 15 ft hydrogen bubble chamber, we have studied inclusive ϱ 0 production in antineutrino-proton charged-current interactions. We measure (0.21 ± 0.03) ϱ 0 /event, corresponding to ϱ 0 / π − =0.12 ± 0.02. As a function of Q 2 and for hadronic masses above a threshold region, the ϱ 0 / π − ratio shows little variation. At least 50% of the ϱ 0 's are consistent with coming from the current fragmentation region. The results agree reasonably well with the predictions of the quark fragmentation model of Feynman and field.
AVERAGE BEAM ENERGY 31 GEV.
No description provided.
No description provided.
From an analysis of 2275 ν¯p→μ++X0 events at an average Q2 of 4.5 GeV2, there are presented the first measurements, up to one undetermined overall normalization constant, of the x dependence of the proton structure functions using antineutrinos, and of the u and d¯+s¯ quark distributions. The result for u(x) is in good agreement with models based on fits to electron and muon scattering data. With u(x) normalized to those models the absolute antiquark momentum distribution x[d¯x+s¯(x)] in the proton is determined.
No description provided.
Charged-current neutrino and antineutrino interaction cross sections have been measured in the energy range 10 to 50 GeV using BEBC filled with a neon-hydrogen mixture. At these energies, σ/E was measured to be (0.73±0.08) 10−38 cm2/GeV per nucleon for neutrinos and (0.32±0.06) 10−38 cm2/GeV per nucleon for antineutrinos.
Axis error includes +- 9/9 contribution (NEUTRAL CURRENT EVENTS AND NEUTRAL HADRON INDUCED REACTIONS, LOSSES OF EVENTS WITH ONLY ONE VISIBLE CHARGED PARTICLE).
Axis error includes +- 9/9 contribution (NEUTRAL CURRENT EVENTS AND NEUTRAL HADRON INDUCED REACTIONS, LOSSES OF EVENTS WITH ONLY ONE VISIBLE CHARGED PARTICLE).
Average total cross sections are given for neutrino charged current interactions at neutrino energies of 2.87 GeV and 9.05 GeV. The ratios 〈σ〉 〈E〉 are 0.69 ± 0.05 and 0.61 ± 0.06 in units of 10 −38 cm 2 /GeV nucleon, respectively The errors include both statistical and systematic uncertainties.
Measured charged current total cross section.
Measured charged current total cross section.
In a broadband neutrino exposure of the Fermilab 15-ft bubble chamber, we observe the production of the Σc++(2426) charmed baryon followed by its decay to Λc+(2260) and π+. We find the mass of the Λc+ to be 2257±10 MeV and the m(Σc++)−m(Λc+) mass difference to be 168±3 MeV. Previously unseen two-body decay modes of the Λc+(2260) are observed.
No description provided.
On a selected sample of 2171 events, observed in the big heavy liquid bubble chamber Gargamelle at CERN, the charged current total cross section for antineutrino on nucleons has been determined up to the laboratory energy E v ̄ = 8 GeV . The total cross section is found to be a linear function of the antineutrino energy expressed by σ tot (E v ̄ ) = (0.26 ± 0.020) × 10 −38 × E v ̄ ( GeV ) cm 2 . The energy dependence of 〈q 2 〉 v ̄ is found to be given by 〈q 2 〉 v ̄ = (0.15 ± 0.04)E v ̄ + (0.05 ± 0.12) ( GeV /c) 2 . With a simplified nuclear model the ratio of cross sections on neutrons andprotons has been estimated as a function of energy and for two different values of the scaling variable x . The results are compared with the prediction of the naive quark parton model.
Measured charged current total cross section.
We present results on charged current inclusive neutrino and antineutrino scattering in the neutrino energy range 30–200 GeV. The results include a) total cross-sections; b)y distributions; c) structure functions; and d) scaling violations observed in the structure functions. The results, as well as their comparison with the results of electron and muon inclusive scattering, are in agreement with the expectations of the quark parton model and QCD.
THE VALUES OF Q2 CORRESPONDING TO THE 6 DATA POINTS ARE 1.126,2.11,3.52,4.92,6.33,7.74.
THE VALUES OF Q2 CORRESPONDING TO THE 7 DATA POINTS ARE 1.27,2.25,4.22,7.04,9.85,12.66,15.48.
THE VALUES OF Q2 CORRESPONDING TO THE 8 DATA POINTS ARE 2.11,3.75,7.04,11.72,16.4,21.1,25.8,30.5.
This paper gives the results of a study of inelastic charged-current interactions of muon-type neutrinos with hydrogen and deuterium targets using the Argonne 12-foot bubble chamber. We discuss in detail the separation of the events from background. For the single-pion production reactions νp→μ−pπ+, νn→μ−nπ+, and νn→μ−pπ0, energy-dependent cross sections, differential cross sections, invariant-mass distributions, and the Δ++(1236) decay angular distribution are presented. These data are also used to study the isospin properties of the πN system. Comparisons of the data with models of single-pion production are made, and a direct test of partial conservation of the axial-vector current is discussed. Cross sections and invariant-mass distributions are given for the reactions in which more than one pion is produced. Ten events of strange-particle production were found, and the properties of these events are discussed. The energy dependence of the total νp and νn cross sections from threshold to 6 GeV was determined, and the σ(νn)σ(νp) ratio measured. This ratio and the inclusive x and y distributions rapidly approach the scaling distributions expected from the quark-parton model.
Measured charged current total cross section.
We present results for the reactions νp→μ−π+p and νp→μ−K+p at energies above 5 GeV. The average cross section for the first reaction between 15 and 40 GeV is (0.80±0.12) × 10−38 cm2 and for events with Mπ+p<1.4 GeV is (0.55±0.08) × 10−38 cm2. The ratio of the cross section for the second reaction to that for the first is 0.017±0.010.
No description provided.
No description provided.
RAPIDITY IS MEASURED IN 'QUARK' REST FRAME DEFINED AS Y(Q)=Y(LAB)-LOG(W**2/M**2) WHERE Y(LAB)=0.5*LOG((E+PL)/(E-PL)).