Date

Measurement of $ D^{*\pm}$ production in deep inelastic scattering at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
JHEP 05 (2013) 097, 2013.
Inspire Record 1225526 DOI 10.17182/hepdata.62363

The production of $D^{*\pm}$ mesons in deep inelastic $ep$ scattering has been measured for exchanged photon virtualities $ 5<Q^2<1000 \gev^2 $, using an integrated luminosity of 363 pb$^{-1}$ with the ZEUS detector at HERA. Differential cross sections have been measured and compared to next-to-leading-order QCD calculations. The cross-sections are used to extract the charm contribution to the proton structure functions, expressed in terms of the reduced charm cross section, $\sigma_{\rm red}^{c\bar{c}}$. Theoretical calculations based on fits to inclusive HERA data are compared to the results.

22 data tables

D(SIG)/DPT IN NB/GEV as a function of PT IN GEV.

D(SIG)/DETARAP IN NB as a function of ETARAP.

D(SIG)/DZ IN NB as a function of Z.

More…

Quadrupole anisotropy in dihadron azimuthal correlations in central d+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 111 (2013) 212301, 2013.
Inspire Record 1222874 DOI 10.17182/hepdata.62722

The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central $p$$+$Pb collisions at $\sqrt{s_{_{NN}}}$=5.02 TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs. The origin of these anisotropies is currently unknown. Various competing explanations include parton saturation and hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies in $d$$+$Au collisions compared to those seen in $p$$+$Pb collisions at the LHC. The larger extracted $v_2$ values in $d$$+$Au collisions at RHIC are consistent with expectations from hydrodynamic calculations owing to the larger expected initial-state eccentricity compared with that from $p$$+$Pb collisions. When both are divided by an estimate of the initial-state eccentricity the scaled anisotropies follow a common trend with multiplicity that may extend to heavy ion data at RHIC and the LHC, where the anisotropies are widely thought to arise from hydrodynamic flow.

5 data tables

The second-order pair anisotropy, c2, of the central collision excess as a function of associated particle pT.

The third-order pair anisotropy, c3, of the central collision excess as a function of associated particle pT.

Charged hadron second-order anisotropy, v2, as a function of pT.

More…

Measurement of $D^\pm$ production in deep inelastic $ep$ scattering with the ZEUS detector at HERA

The ZEUS collaboration Abt, I. ; Adamczyk, L. ; Adamus, M. ; et al.
JHEP 05 (2013) 023, 2013.
Inspire Record 1220382 DOI 10.17182/hepdata.62364

Charm production in deep inelastic ep scattering was measured with the ZEUS detector using an integrated luminosity of 354 pb^{-1}. Charm quarks were identified by reconstructing D^{+} mesons in the D^{+} -> K^{-} pi^{+} pi^{+} decay channel. Lifetime information was used to reduce combinatorial background substantially. Differential cross sections were measured in the kinematic region 5 < Q^{2} < 1000 GeV^{2}, 0.02 < y < 0.7, 1.5 < p_{T}(D^{+}) < 15 GeV and |eta(D^{+})| < 1.6, where Q^{2} is the photon virtuality, y is the inelasticity, and p_{T}(D^{+}) and eta(D^{+}) are the transverse momentum and the pseudorapidity of the D^{+} meson, respectively. Next-to-leading-order QCD predictions are compared to the data. The charm contribution, F_{2}^{cc}, to the proton structure-function F_{2} was extracted.

12 data tables

The bin-averaged differential cross section as a function of Q^2. The (sys) error is the experimental systematic uncertainty, excluding the luminosity and branching ratio uncertainties.

The bin-averaged differential cross section as a function of Y. The (sys) error is the experimental systematic uncertainty, excluding the luminosity and branching ratio uncertainties.

The bin-averaged differential cross section as a function of PT. The (sys) error is the experimental systematic uncertainty, excluding the luminosity and branching ratio uncertainties.

More…

Measurement of the inclusive differential jet cross section in pp collisions at sqrt{s} = 2.76 TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
Phys.Lett.B 722 (2013) 262-272, 2013.
Inspire Record 1210881 DOI 10.17182/hepdata.60430

The ALICE collaboration at the CERN Large Hadron Collider reports the first measurement of the inclusive differential jet cross section at mid-rapidity in pp collisions at $\sqrt{s} = 2.76$ TeV, with integrated luminosity of 13.6 nb$^{-1}$. Jets are measured over the transverse momentum range 20 to 125 GeV/c and are corrected to the particle level. Calculations based on Next-to-Leading Order perturbative QCD are in good agreement with the measurements. The ratio of inclusive jet cross sections for jet radii $R = 0.2$ and $R = 0.4$ is reported, and is also well reproduced by a Next-to-Leading Order perturbative QCD calculation when hadronization effects are included.

2 data tables

Inclusive differential jet cross section for R=0.2 and R=0.4.

Ratio of the inclusive differential jet cross section for R=0.2 and R=0.4.


Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 111 (2013) 032301, 2013.
Inspire Record 1207323 DOI 10.17182/hepdata.95877

The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the photon is an excellent approximation to the initial p_T of the jet and the ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_ AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z_T. The fragment yield at low z_T is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.

5 data tables

Direct photon-hadron pair per-trigger yields vs Delta-phi (Au+Au and p+p)

Integrated per-trigger yields and I_AA vs xi

Integrated per-trigger yields and I_AA vs xi

More…

Measurement of inelastic J/psi and psi^prime photoproduction at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
JHEP 02 (2013) 071, 2013.
Inspire Record 1204785 DOI 10.17182/hepdata.62399

The cross sections for inelastic photoproduction of J/psi and psi^prime mesons have been measured in ep collisions with the ZEUS detector at HERA, using an integrated luminosity of 468 pb-1 collected in the period 1996--2007. The psi^prime to J/psi cross section ratio was measured in the range 0.55 < z < 0.9 and 60 < W < 190 GeV as a function of W, z and p_T. Here W denotes the photon-proton centre-of-mass energy, z is the fraction of the incident photon energy carried by the meson and p_T is the transverse momentum of the meson with respect to the beam axis. The J/psi cross sections were measured for 0.1 < z < 0.9, 60 < W < 240 GeV and p_T > 1 GeV. Theoretical predictions within the non-relativistic QCD framework including NLO colour--singlet and colour--octet contributions were compared to the data, as were predictions based on the k_T--factorisation approach.

12 data tables

Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of PT.

Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of W.

Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of Z.

More…

Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 87 (2013) 044909, 2013.
Inspire Record 1203021 DOI 10.17182/hepdata.142074

The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX experiment at the Relativistic Heavy-Ion Collider. Cross sections for the inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per binary collision for d+Au collisions relative to those in p+p collisions (R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going direction. The measured results are compared to a nuclear-shadowing model, EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section, sigma_br, and compared to lower energy p+A results. We also compare the results to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity dependence of the observed Upsilon suppression is consistent with lower energy p+A measurements.

1 data table

$\Upsilon$ invariant yields and cross sections of $p$+$p$ and $d$+Au collisions.


Double Spin Asymmetry of Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 87 (2013) 012011, 2013.
Inspire Record 1185576 DOI 10.17182/hepdata.142146

We report on the first measurement of double-spin asymmetry, A_LL, of electrons from the decays of hadrons containing heavy flavor in longitudinally polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The asymmetry was measured at mid-rapidity (|eta|<0.35) with the PHENIX detector at the Relativistic Heavy Ion Collider. The measured asymmetries are consistent with zero within the statistical errors. We obtained a constraint for the polarized gluon distribution in the proton of |Delta g/g(log{_10}x= -1.6^+0.5_-0.4, {mu}=m_T^c)|^2 < 0.033 (1 sigma), based on a leading-order perturbative-quantum-chromodynamics model, using the measured asymmetry.

2 data tables

Invariant differential cross sections of electrons from heavy-flavor decays.

Double-spin asymmetry of the heavy flavor electron production.


Inclusive cross section and single-transverse-spin asymmetry for very forward neutron production in polarized p+p collisions at sqrt(s)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 88 (2013) 032006, 2013.
Inspire Record 1185577 DOI 10.17182/hepdata.143074

The energy dependence of the single-transverse-spin asymmetry, A_N, and the cross section for neutron production at very forward angles were measured in the PHENIX experiment at RHIC for polarized p+p collisions at sqrt(s)=200 GeV. The neutrons were observed in forward detectors covering an angular range of up to 2.2 mrad. We report results for neutrons with momentum fraction of x_F=0.45 to 1.0. The energy dependence of the measured cross sections were consistent with x_F scaling, compared to measurements by an ISR experiment which measured neutron production in unpolarized p+p collisions at sqrt(s)=30.6--62.7 GeV. The cross sections for large x_F neutron production for p+p collisions, as well as those in e+p collisions measured at HERA, are described by a pion exchange mechanism. The observed forward neutron asymmetries were large, reaching A_N=-0.08+/-0.02 for x_F=0.8; the measured backward asymmetries, for negative x_F, were consistent with zero. The observed asymmetry for forward neutron production is discussed within the pion exchange framework, with interference between the spin-flip amplitude due to the pion exchange and nonflip amplitudes from all Reggeon exchanges. Within the pion exchange description, the measured neutron asymmetry is sensitive to the contribution of other Reggeon exchanges even for small amplitudes.

3 data tables

The cross section results for forward neutron production in $p$+$p$ collisions at $\sqrt{s}$ = 200 GeV are shown. Two different forms, exponential and Gaussian, were used for the $p_T$ distribution. The integrated $p_T$ region for each bin is 0 < $p_T$ < 0.11$x_F$ GeV/$c$.

The $x_F$ dependence of $A_N$ for neutron production in the ZDC trigger sample.

The $x_F$ dependence of $A_N$ for neutron production for the ZDC$\otimes$BBC trigger sample.


Measurement of high-Q2 neutral current deep inelastic e+p scattering cross sections with a longitudinally polarised positron beam at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Rev.D 87 (2013) 052014, 2013.
Inspire Record 1183813 DOI 10.17182/hepdata.62614

Measurements of neutral current cross sections for deep inelastic scattering in e+p collisions at HERA with a longitudinally polarised positron beam are presented. The single-differential cross-sections d(sigma)/dQ2, d(sigma)/dx and d(sigma)/dy and the reduced cross-section were measured in the kinematic region Q2 > 185 GeV2 and y < 0.9, where Q2 is the four-momentum transfer squared, x the Bjorken scaling variable, and y the inelasticity of the interaction. The measurements were performed separately for positively and negatively polarised positron beams. The measurements are based on an integrated luminosity of 135.5 pb-1 collected with the ZEUS detector in 2006 and 2007 at a centre-of-mass energy of 318 GeV. The structure functions F3 and F3(gamma)Z were determined by combining the e+p results presented in this paper with previously published e-p neutral current results. The asymmetry parameter A+ is used to demonstrate the parity violation predicted in electroweak interactions. The measurements are well described by the predictions of the Standard Model.

26 data tables

The single-differential cross section DSIG/DQ**2 (Y<0.9,Y(1-x)**2>0.004), corrected to the electroweak Born level, for zero polarisation, Pe=0.

The single-differential cross section DSIG/DQ**2 (Y<0.9,Y(1-x)**2>0.004), corrected to the electroweak Born level, for positive (Pe=+0.32) and negative (Pe=-0.36) polarisations.

The single-differential cross section DSIG/DX (Y<0.9,Y(1-x)**2>0.004) at Q^2=185 GeV^2, corrected to the electroweak Born level, for zero (Pe=0), positive (Pe=+0.32) and negative (Pe=-0.36) polarisations.

More…