The differential cross section for the reaction π + + d → p + p has been measured at pion momenta between 0.48 and 1.16 GeV c with steps of 20 and 40 GeV c for seven CM proton angles between 6° and 61°. At smaller angles, the measured cross sections show a dip at around 0.7 GeV c , while at larger angles the cross sections vary monotonically as a function of incident momentum. The angular distribution shows a considerably rapid variation with increasing momentum. Legendre polynomial fits of the data are presented.
No description provided.
LEGENDRE POLYNOMIAL COEFFICIENTS. NOTE THE FORM OF THE LEGENDRE EXPANSION DIFFERS BY A FACTOR P**-2 FROM THE CONVENTIONAL ONE.
The total cross section difference Δα L (pp) for proton-proton scattering with beam and target polarized longitudinally parallel and antiparallel, respectively, has been measured using the polarized proton beam from SATURNE II and a frozen spin polarized proton target. The beam polarization was reversed from pulse to pulse, and at each energy Δα L was measured for both signs of target polarization. The data below 800 MeV confirm the previously observed structures. The cross section difference is found to change by 8.0 ± 0.5 mb between 520 MeV and 760 MeV. At the higher energies the results show no indication for similar structures or for a change of the sign of Δα L .
ERRORS INCLUDE UNCERTAINTY IN THE BEAM POLARIZATION.
An exposure of BEBC equipped with the hydrogen-filled TST to the v μ wide band beam at the CERN SPS has been used to study v μ interactions on free protons. About neutral induced interactions have been observed inside the hydrogen and separated into charged current, neutral current and neutral hadron interactions using a multivariate discriminant analysis based on the kinematics of the events. The neutral to charged current cross-section ratio has been determined to be R p v = 0.33 ± 0.04 . When combined with the value of R p v previously determined in the same experiment, the result is compatible with the prediction of the standard SU (2) × U (1) model for sin 2 θ W = 0.24 −0.08 +0.06 and ρ = 1.07 −0.08 +0.06 . Fixing the parameter ρ = 1 yields sin 2 θ W = 0.18 ± 0.04.
No description provided.
e + e − annihilation into hadrons was studied at CM energies between 39.8 and 45.2 GeV and a search was made for new heavy quarks. No evidence was found for the existence of a narrow state excluding the possible existence of the lowest vector toponium state in this mass range. A search for continuum production of heavy quarks led to lower mass limits for new quarks of 22.0 GeV ( e Q = 2 3 ) and 21.0 GeV ( e Q = 1 3 ). Quarks are found to be pointlike, the corresponding mass parameter being larger than 288 GeV. A fit of the QCD and the electroweak contributions to R = σ tot / σ μμ yielded sin 2 θ W = 0.30 −0.07 +0.23 .
STATISTICAL ERRORS ONLY. NUMERICAL VALUES OF DATA TAKEN FROM PREPRINT.
No description provided.
No description provided.
Reconstruction of charged D ∗ 's produced inclusively in e + e −. annihilation at CM energies near 34.4 GeV is accomplished in the decay modes D ∗ + → D 0 π + → K − gp + π 0 π + and D ∗ + → D 0 π + → K − gp + π − π + π + and their charge conjugates. Using these and previously reported D ∗ + → D 0 π + → K − gp + π + and D ∗ + → D 0 π + → K − gp + π + + missing π 0 channels we present evidence for hard gluon bremsstrahlung from charm quarks and show that the ratio of the quark-gluon coupling constant of charm quarks to the coupling constant obtained in the average hadronic event, α s c α rms = 100 ± 0.20 ± 1.20 . Our result provides evidence that the quark-gluon coupling constant is independent of flavor.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The differential cross sections of the reaction p―p→n―n were measured at 390, 490, 590, 690, and 780 MeV/c. The existence of the theoretically predicted forward dip is confirmed. The results are compared with the predictions of various N―N potential models.
NUMERICAL VALUES SUPPLIED BY F. SAI.
NUMERICAL VALUES SUPPLIED BY F. SAI.
NUMERICAL VALUES SUPPLIED BY F. SAI.
The magnetic moment of the Ξ− hyperon has been measured to be μ(Ξ−)=−0.69±0.04±0.02 nuclear magnetons, where the uncertainties are statistical and systematic, respectively.
No description provided.
The electroweak production asymmetry and the decay fragmentation function for e + e − → c c have been measured at s = 29 GeV using charged D ∗ production over the full kinematic range. The data were taken at PEP using the High Resolution Spectrometer. The measured asymmetry is −0.12 ± 0.08. The total production cross section in units of the point cross section corrected for initial state radiation is R D ∗ = 2.7 ± 0.9 .
ASSUMES SIG(D*+) = SIG(D*0). (EXPT. MEASURES D*+ PRODUCTION ONLY). R VALUE CORRECTED FOR INITIAL STATE RADIATION.
No description provided.
We have observed inclusive production of D0 and D+ mesons, and their charge conjugates, in e+e− annihilation at 29 GeV on the basis of a data sample of 106 pb−1. These signals correspond to R values of R(D0+D―0)=1.8±0.5 and R(D++D−)=1.2±0.4. Taking the D+ and D0 data together, we measure a charge asymmetry of A=−0.08±0.12 for charmed quarks. A comparison of R(D+D―) with R(D*+D―*) obtained via the process D*+→D0π+ gives a DD* ratio of 1.0−0.2+0.3, indicating that direct D* production dominates over direct D production.
No description provided.
EXTRAPOLATED TO ALL Z.
No description provided.