Systematic study of nuclear effects in $p$ $+$Al, $p$ $+$Au, $d$ $+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV using $\pi^0$ production

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 105 (2022) 064902, 2022.
Inspire Record 1965617 DOI 10.17182/hepdata.115023

The PHENIX collaboration presents a systematic study of $\pi^0$ production from $p$ $+$ $p$, $p$ $+$Al, $p$ $+$Au, $d$ $+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Measurements were performed with different centrality selections as well as the total inelastic, 0%--100%, selection for all collision systems. For 0%--100% collisions, the nuclear modification factors, $R_{xA}$, are consistent with unity for $p_T$ above 8 GeV/$c$, but exhibit an enhancement in peripheral collisions and a suppression in central collisions. The enhancement and suppression characteristics are similar for all systems for the same centrality class. It is shown that for high-$p_T$-$\pi^0$ production, the nucleons in the $d$ and $^3$He interact mostly independently with the Au nucleus and that the counter intuitive centrality dependence is likely due to a physical correlation between multiplicity and the presence of a hard scattering process. These observations disfavor models where parton energy loss has a significant contribution to nuclear modifications in small systems. Nuclear modifications at lower $p_T$ resemble the Cronin effect -- an increase followed by a peak in central or inelastic collisions and a plateau in peripheral collisions. The peak height has a characteristic ordering by system size as $p$ $+$Au $>$ $d$ $+$Au $>$ $^{3}$He$+$Au $>$ $p$ $+$Al. For collisions with Au ions, current calculations based on initial state cold nuclear matter effects result in the opposite order, suggesting the presence of other contributions to nuclear modifications, in particular at lower $p_T$.

28 data tables

Differential cross section of $\pi^0$ in p+p collisions at $\sqrt{s}$ = 200 GeV

Invariant yield of $\pi^0$ from (a) p+Al, (b) p+Au, (c) d+Au, and (d) $^{3}$HeAu in different centrality selections at $\sqrt{s}$ = 200 GeV

Nuclear modification factors from inelastic (a) p+Al, (b) p+Au, (c) d+Au, and (d) $^{3}$HeAu collisions at $\sqrt{s}$ = 200 GeV. The right boxes are the $N_{coll}$ uncertainties from the Glauber model, while the left box represents the overall normalization uncertainty from p+p collisions

More…

Dielectron production in Au$+$Au collisions at $\sqrt{s_{NN}}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 014904, 2016.
Inspire Record 1393530 DOI 10.17182/hepdata.143067

We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair transverse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The \ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair \pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3\pm0.4({\rm stat})\pm0.4({\rm syst})\pm0.2^{\rm model}$ or to $1.7\pm0.3({\rm stat})\pm0.3({\rm syst})\pm0.2^{\rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {\sc pythia} or {\sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $\rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.

2 data tables

Cocktail of hadronic sources for the 2010 run using the PYTHIA generator for the open heavy flavor contributions.

Invariant mass spectrum of $e^+e^-$ pairs in MB Au+Au collisions within the PHENIX acceptance compared to the cocktail of expected decays.


Transverse-Momentum Dependence of the J/psi Nuclear Modification in d+Au Collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 87 (2013) 034904, 2013.
Inspire Record 1102930 DOI 10.17182/hepdata.142077

We present measured J/psi production rates in d+Au collisions at sqrt(s_NN) = 200 GeV over a broad range of transverse momentum (p_T=0-14 GeV/c) and rapidity (-2.2<y<2.2). We construct the nuclear-modification factor R_dAu for these kinematics and as a function of collision centrality (related to impact parameter for the R_dAu collision). We find that the modification is largest for collisions with small impact parameters, and observe a suppression (R_dAu<1) for p_T<4 GeV/c at positive rapidities. At negative rapidity we observe a suppression for p_T<2 GeV/c then an enhancement (R_dAu>1) for p_T>2 GeV/c. The observed enhancement at negative rapidity has implications for the observed modification in heavy-ion collisions at high p_T.

27 data tables

$J/\psi$ invariant yield as a function of $p_T$ for $p+p$ and 0–100% centrality integrated $d$+Au collisions. The type C systematic uncertainty for each distribution is given as a percentage in the legend. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

$J/\psi$ invariant yield as a function of $p_T$ for $p+p$ and 0–100% centrality integrated $d$+Au collisions. The type C systematic uncertainty for each distribution is given as a percentage in the legend. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

$J/\psi$ invariant yield as a function of $p_T$ for $p+p$ and 0–100% centrality integrated $d$+Au collisions. The type C systematic uncertainty for each distribution is given as a percentage in the legend.Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

More…

Production of omega mesons in p+p, d+Au, Cu+Cu, and Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 044902, 2011.
Inspire Record 900308 DOI 10.17182/hepdata.143307

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured omega meson production via leptonic and hadronic decay channels in p+p, d+Au, Cu+Cu, and Au+Au collisions at sqrt(s_NN) = 200 GeV. The invariant transverse momentum spectra measured in different decay modes give consistent results. Measurements in the hadronic decay channel in Cu+Cu and Au+Au collisions show that omega production has a suppression pattern at high transverse momentum, similar to that of pi^0 and eta in central collisions, but no suppression is observed in peripheral collisions. The nuclear modification factors, R_AA, are consistent in Cu+Cu and Au+Au collisions at similar numbers of participant nucleons.

34 data tables

Invariant transverse momentum spectra of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s}$=200 GeV.

Invariant transverse momentum spectra of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s}$=200 GeV.

Invariant transverse momentum spectra of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s}$=200 GeV.

More…