Low-$p_T$ direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=39$ and 62.4 GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Adare, A. ; et al.
Phys.Rev.C 107 (2023) 024914, 2023.
Inspire Record 2057344 DOI 10.17182/hepdata.133218

The measurement of direct photons from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=39$ and 62.4 GeV in the transverse-momentum range $0.4<p_T<3$ Gev/$c$ is presented by the PHENIX collaboration at the Relativistic Heavy Ion Collider. A significant direct-photon yield is observed in both collision systems. A universal scaling is observed when the direct-photon $p_T$ spectra for different center-of-mass energies and for different centrality selections at $\sqrt{s_{_{NN}}}=62.4$ GeV is scaled with $(dN_{\rm ch}/d\eta)^{\alpha}$ for $\alpha=1.21{\pm}0.04$. This scaling also holds true for direct-photon spectra from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV measured earlier by PHENIX, as well as the spectra from Pb$+$Pb at $\sqrt{s_{_{NN}}}=2760$ GeV published by ALICE. The scaling power $\alpha$ seems to be independent of $p_T$, center of mass energy, and collision centrality. The spectra from different collision energies have a similar shape up to $p_T$ of 2 GeV/$c$. The spectra have a local inverse slope $T_{\rm eff}$ increasing with $p_T$ of $0.174\pm0.018$ GeV/$c$ in the range $0.4<p_T<1.3$ GeV/$c$ and increasing to $0.289\pm0.024$ GeV/$c$ for $0.9<p_T<2.1$ GeV/$c$. The observed similarity of low-$p_T$ direct-photon production from $\sqrt{s_{_{NN}}}= 39$ to 2760 GeV suggests a common source of direct photons for the different collision energies and event centrality selections, and suggests a comparable space-time evolution of direct-photon emission.

12 data tables

$R_{\gamma}$ for minimum bias (0-86%) Au+Au collision at $\sqrt{s_{NN}} = 62.4$ GeV (a) and $39$ GeV (b). For $62.4$ GeV also centrality bins of 0-20% (c) and 20-40% (d) are shown. Data points are shown with statistical (bar) and systematic uncertainties (box)

$R_{\gamma}$ for minimum bias (0-86%) Au+Au collision at $\sqrt{s_{NN}} = 62.4$ GeV (a) and $39$ GeV (b). For $62.4$ GeV also centrality bins of 0-20% (c) and 20-40% (d) are shown. Data points are shown with statistical (bar) and systematic uncertainties (box)

Direct photon spectra for minimum bias (0-86%) Au+Au collision at $\sqrt{s_{NN}} = 62.4$ GeV (a) and $39$ GeV (b). For $62.4$ GeV also centrality bins of 0-20% (c) and 20-40% (d) are shown. Data points are shown with statistical and systematic uncertainties, unless the central value is negative (arrows) or is consistent with zero within the statistical uncertainties (arrows with data point). In these cases upper limit with CL = 95$%$ are given.

More…

Systematic study of nuclear effects in $p$ $+$Al, $p$ $+$Au, $d$ $+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV using $\pi^0$ production

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 105 (2022) 064902, 2022.
Inspire Record 1965617 DOI 10.17182/hepdata.115023

The PHENIX collaboration presents a systematic study of $\pi^0$ production from $p$ $+$ $p$, $p$ $+$Al, $p$ $+$Au, $d$ $+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Measurements were performed with different centrality selections as well as the total inelastic, 0%--100%, selection for all collision systems. For 0%--100% collisions, the nuclear modification factors, $R_{xA}$, are consistent with unity for $p_T$ above 8 GeV/$c$, but exhibit an enhancement in peripheral collisions and a suppression in central collisions. The enhancement and suppression characteristics are similar for all systems for the same centrality class. It is shown that for high-$p_T$-$\pi^0$ production, the nucleons in the $d$ and $^3$He interact mostly independently with the Au nucleus and that the counter intuitive centrality dependence is likely due to a physical correlation between multiplicity and the presence of a hard scattering process. These observations disfavor models where parton energy loss has a significant contribution to nuclear modifications in small systems. Nuclear modifications at lower $p_T$ resemble the Cronin effect -- an increase followed by a peak in central or inelastic collisions and a plateau in peripheral collisions. The peak height has a characteristic ordering by system size as $p$ $+$Au $>$ $d$ $+$Au $>$ $^{3}$He$+$Au $>$ $p$ $+$Al. For collisions with Au ions, current calculations based on initial state cold nuclear matter effects result in the opposite order, suggesting the presence of other contributions to nuclear modifications, in particular at lower $p_T$.

28 data tables

Differential cross section of $\pi^0$ in p+p collisions at $\sqrt{s}$ = 200 GeV

Invariant yield of $\pi^0$ from (a) p+Al, (b) p+Au, (c) d+Au, and (d) $^{3}$HeAu in different centrality selections at $\sqrt{s}$ = 200 GeV

Nuclear modification factors from inelastic (a) p+Al, (b) p+Au, (c) d+Au, and (d) $^{3}$HeAu collisions at $\sqrt{s}$ = 200 GeV. The right boxes are the $N_{coll}$ uncertainties from the Glauber model, while the left box represents the overall normalization uncertainty from p+p collisions

More…

Measurement of jet-medium interactions via direct photon-hadron correlations in Au$+$Au and $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Afanasiev, S. ; et al.
Phys.Rev.C 102 (2020) 054910, 2020.
Inspire Record 1798493 DOI 10.17182/hepdata.101752

We present direct photon-hadron correlations in 200 GeV/A Au+Au, d+Au, and p+p collisions, for direct photon pT from 5–12 GeV/c, collected by the PHENIX Collaboration in the years from 2006 to 2011. We observe no significant modification of jet fragmentation in d+Au collisions, indicating that cold nuclear matter effects are small or absent. Hadrons carrying a large fraction of the quark's momentum are suppressed in Au+Au compared to p+p and d+Au. As the momentum fraction decreases, the yield of hadrons in Au+Au increases to an excess over the yield in p+p collisions. The excess is at large angles and at low hadron pT and is most pronounced for hadrons associated with lower momentum direct photons. Comparison to theoretical calculations suggests that the hadron excess arises from medium response to energy deposited by jets.

14 data tables

Per-trigger yield of hadrons associated to direct photons in Au+Au collisions for direct photon $p_T$ 5-9 GeV/$c$, compared with p+p baseline, in various $\xi$ bins.

Per-trigger yield of hadrons associated to direct photons in d+Au collisions for direct photon $p_T$ 7-9 GeV/$c$, compared with p+p baseline, in various $\xi$ bins.

Integrated away-side $\gamma_{dir}$-h per-trigger yields of Au+Au, d+Au, and p+p, as a function of $\xi$.

More…

Beam-energy and centrality dependence of direct-photon emission from ultra-relativistic heavy-ion collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 123 (2019) 022301, 2019.
Inspire Record 1672476 DOI 10.17182/hepdata.110699

The PHENIX collaboration presents first measurements of low-momentum ($0.4<p_T<3$ GeV/$c$) direct-photon yields from Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=39 and 62.4 GeV. For both beam energies the direct-photon yields are substantially enhanced with respect to expectations from prompt processes, similar to the yields observed in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200. Analyzing the photon yield as a function of the experimental observable $dN_{\rm ch}/d\eta$ reveals that the low-momentum ($>$1\,GeV/$c$) direct-photon yield $dN_{\gamma}^{\rm dir}/d\eta$ is a smooth function of $dN_{\rm ch}/d\eta$ and can be well described as proportional to $(dN_{\rm ch}/d\eta)^\alpha$ with $\alpha{\sim}$1.25. This new scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and Large Hadron Collider, for centrality selected samples, as well as for different, $A$$+$$A$ collision systems. At a given beam energy the scaling also holds for high $p_T$ ($>5$\,GeV/$c$) but when results from different collision energies are compared, an additional $\sqrt{s_{_{NN}}}$-dependent multiplicative factor is needed to describe the integrated-direct-photon yield.

21 data tables

Direct photon spectra(Physical Review C87, 054907 (2013)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 200 GeV.

Direct photon spectra(Physics Letters B94, 106 (1980)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 62.4 GeV.

Direct photon spectra(Nucl. Part. Phys. 23, A1 (1997) and Sov. J. Nucl. Phys. 51, 836 (1990)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 63 GeV.

More…

Measurement of emission angle anisotropy via long-range angular correlations with high $p_T$ hadrons in $d$$+$Au and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 98 (2018) 014912, 2018.
Inspire Record 1638373 DOI 10.17182/hepdata.141453

We present measurements of two-particle angular correlations between high-transverse-momentum ($2<p_T<11$ GeV/$c$) $\pi^0$ observed at midrapidity ($|\eta|<0.35$) and particles produced either at forward ($3.1<\eta<3.9$) or backward ($-3.7<\eta<-3.1$) rapidity in $d$$+$Au and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The azimuthal angle correlations for particle pairs with this large rapidity gap in the Au-going direction exhibit a ridge-like structure that persists up to $p_T{\approx}6$ GeV/$c$ and which strongly depends on collision centrality, which is a similar characteristic to the hydrodynamical particle flow in A+A collisions. The ridge-like structure is absent in the $d$-going direction as well as in $p$$+$$p$ collisions, in the transverse-momentum range studied. The results indicate that the ridge-like structure is shifted in the Au-going direction toward more central collisions, similar to the charged-particle pseudorapidity distributions.

8 data tables

Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: (a) the negative of the dipole coefficient, $-c_1$; (b) the quadrupole coefficient $c_2$; (c) the ratio ${-c_2}/{c_1}$.

Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: Fractional systematic uncertainty on the quadrupole coefficient $c_2$ for $d$+Au.

Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: Fractional systematic uncertainty on the quadrupole coefficient $c_2$ for $p$+$p$.

More…

Lévy-stable two-pion Bose-Einstein correlations in $\sqrt{s_{NN}}=200$ GeV Au$+$Au collisions

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 97 (2018) 064911, 2018.
Inspire Record 1624209 DOI 10.17182/hepdata.144180

We present a detailed measurement of charged two-pion correlation functions in 0%-30% centrality $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions by the PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from L\'evy-stable source distributions. Using a fine transverse momentum binning, we extract the correlation strength parameter $\lambda$, the L\'evy index of stability $\alpha$ and the L\'evy length scale parameter $R$ as a function of average transverse mass of the pair $m_T$. We find that the positively and the negatively charged pion pairs yield consistent results, and their correlation functions are represented, within uncertainties, by the same L\'evy-stable source functions. The $\lambda(m_T)$ measurements indicate a decrease of the strength of the correlations at low $m_T$. The L\'evy length scale parameter $R(m_T)$ decreases with increasing $m_T$, following a hydrodynamically predicted type of scaling behavior. The values of the L\'evy index of stability $\alpha$ are found to be significantly lower than the Gaussian case of $\alpha=2$, but also significantly larger than the conjectured value that may characterize the critical point of a second-order quark-hadron phase transition.

12 data tables

Example fits of Bose-Einstein correlation functions of (a) $\pi^{-}\pi^{-}$ pair with $m_{T}$ between 0.331 and 0.349 GeV/$c^2$ and of (b) $\pi^{+}\pi^{+}$ pair with $m_T$ between 0.655 and 0.675 GeV/$c^2$, as a function $Q$ ≡ |$q_{LCMS}$|, defined in Eq. (26). Both fits show the measured correlation function and the complete fit function (described in VI A), while a Bose-Einstein fit function $C^{(0)}_{2} (Q)$ is also shown, with the Coulomb-corrected data, i.e. the raw data multiplied by $C^{(0)}_{2} (Q)/C_{2}(Q)$. In this analysis we measured 62 such correlation functions (for ++ and -- pairs, in 31 $m_T$ bins), and fitted all of them with the method described in VIA. The first visible point on both panels corresponds to $Q$ values below the accessible range (based on an evaluation of the two-track cuts), these were not taken into account in the fitting.

Example fits of Bose-Einstein correlation functions of (a) $\pi^{-}\pi^{-}$ pair with $m_{T}$ between 0.331 and 0.349 GeV/$c^2$ and of (b) $\pi^{+}\pi^{+}$ pair with $m_T$ between 0.655 and 0.675 GeV/$c^2$, as a function $Q$ ≡ |$q_{LCMS}$|, defined in Eq. (26). Both fits show the measured correlation function and the complete fit function (described in VI A), while a Bose-Einstein fit function $C^{(0)}_{2} (Q)$ is also shown, with the Coulomb-corrected data, i.e. the raw data multiplied by $C^{(0)}_{2} (Q)/C_{2}(Q)$. In this analysis we measured 62 such correlation functions (for ++ and -- pairs, in 31 $m_T$ bins), and fitted all of them with the method described in VIA. The first visible point on both panels corresponds to $Q$ values below the accessible range (based on an evaluation of the two-track cuts), these were not taken into account in the fitting.

Correlation strength parameter $\lambda$ versus average $m_T$ of the pair, for 0%-30% centrality collisions. Statistical and systematic uncertainties are shown as bars and boxes.

More…

Azimuthally anisotropic emission of low-momentum direct photons in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 94 (2016) 064901, 2016.
Inspire Record 1394895 DOI 10.17182/hepdata.143116

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd and 3rd order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of $0.4<p_{T}<4.0$ GeV/$c$. At low $p_T$ the second-order coefficients, $v_2$, are similar to the ones observed in hadrons. Third order coefficients, $v_3$, are nonzero and almost independent of centrality. These new results on $v_2$ and $v_3$, combined with previously published results on yields, are compared to model calculations that provide yields and asymmetries in the same framework. Those models are challenged to explain simultaneously the observed large yield and large azimuthal anisotropies.

2 data tables

Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the conversion method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).

Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the calorimeter method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).


Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}}=7.7$ to 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 024901, 2016.
Inspire Record 1394433 DOI 10.17182/hepdata.96601

Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems.

28 data tables

Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV

More…

Scaling properties of fractional momentum loss of high-pT hadrons in nucleus-nucleus collisions at $\sqrt{s_{_{NN}}}$ from 62.4 GeV to 2.76 TeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 024911, 2016.
Inspire Record 1394434 DOI 10.17182/hepdata.142336

Measurements of the fractional momentum loss ($S_{\rm loss}\equiv{\delta}p_T/p_T$) of high-transverse-momentum-identified hadrons in heavy ion collisions are presented. Using $\pi^0$ in Au$+$Au and Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=62.4$ and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb$+$Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of $S_{\rm loss}$ as a function of a number of variables: the number of participants, $N_{\rm part}$, the number of quark participants, $N_{\rm qp}$, the charged-particle density, $dN_{\rm ch}/d\eta$, and the Bjorken energy density times the equilibration time, $\varepsilon_{\rm Bj}\tau_{0}$. We find that the $p_T$ where $S_{\rm loss}$ has its maximum, varies both with centrality and collision energy. Above the maximum, $S_{\rm loss}$ tends to follow a power-law function with all four scaling variables. The data at $\sqrt{s_{_{NN}}}$=200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of $S_{\rm loss}$ with $dN_{\rm ch}/d\eta$ and $\varepsilon_{\rm Bj}\tau_{0}$, lending insight on the physics of parton energy loss.

14 data tables

Global variables for Au+Au collisions at RHIC from PHENIX.

Global variables for Au+Au collisions at RHIC from PHENIX.

Global variables for Cu+Cu collisions at RHIC from PHENIX.

More…

$\phi$ meson production in the forward/backward rapidity region in Cu$+$Au collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 024904, 2016.
Inspire Record 1394228 DOI 10.17182/hepdata.142075

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured $\phi$ meson production and its nuclear modification in asymmetric Cu$+$Au heavy-ion collisions at $\sqrt{s_{NN}}=200$ GeV at both forward Cu-going direction ($1.2<y<2.2$) and backward Au-going direction ($-2.2<y<-1.2$), rapidities. The measurements are performed via the dimuon decay channel and reported as a function of the number of participating nucleons, rapidity, and transverse momentum. In the most central events, 0\%--20\% centrality, the $\phi$ meson yield integrated over $1<p_T<5$ GeV/$c$ prefers a smaller value, which means a larger nuclear modification, in the Cu-going direction compared to the Au-going direction. Additionally, the nuclear-modification factor in Cu$+$Au collisions averaged over all centrality is measured to be similar to the previous PHENIX result in $d$$+$Au collisions for these rapidities.

7 data tables

Invariant yield as a function of the number of participating nucleons for 1.2 < $|y|$ < 2.2 and 1 < $p_T$ < 5 GeV/$c$. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

Invariant yield as a function of transverse momentum for 1.2 < $|y|$ < 2.2 and 0%–93% centrality. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

Invariant yield as a function of rapidity for 1 < $p_T$ < 5 GeV/$c$ and 0%–93% centrality. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

More…

Dielectron production in Au$+$Au collisions at $\sqrt{s_{NN}}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 014904, 2016.
Inspire Record 1393530 DOI 10.17182/hepdata.143067

We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair transverse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The \ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair \pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3\pm0.4({\rm stat})\pm0.4({\rm syst})\pm0.2^{\rm model}$ or to $1.7\pm0.3({\rm stat})\pm0.3({\rm syst})\pm0.2^{\rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {\sc pythia} or {\sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $\rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.

2 data tables

Cocktail of hadronic sources for the 2010 run using the PYTHIA generator for the open heavy flavor contributions.

Invariant mass spectrum of $e^+e^-$ pairs in MB Au+Au collisions within the PHENIX acceptance compared to the cocktail of expected decays.


Measurements of elliptic and triangular flow in high-multiplicity $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 115 (2015) 142301, 2015.
Inspire Record 1384274 DOI 10.17182/hepdata.141742

We present the first measurement of elliptic ($v_2$) and triangular ($v_3$) flow in high-multiplicity $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in $^{3}$He$+$Au and in $p$$+$$p$ collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the $^{3}$He$+$Au system. The collective behavior is quantified in terms of elliptic $v_2$ and triangular $v_3$ anisotropy coefficients measured with respect to their corresponding event planes. The $v_2$ values are comparable to those previously measured in $d$$+$Au collisions at the same nucleon-nucleon center-of-mass energy. Comparison with various theoretical predictions are made, including to models where the hot spots created by the impact of the three $^{3}$He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.

1 data table

Results for $v_2$ and $v_3$ as a function of $p_T$ for inclusive charged hadrons at midrapidity in 0-5% central $^3$He+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.


$\phi$ meson production in $d+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 92 (2015) 044909, 2015.
Inspire Record 1379995 DOI 10.17182/hepdata.142332

The PHENIX experiment has measured $\phi$ meson production in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV using the dimuon and dielectron decay channels. The $\phi$ meson is measured in the forward (backward) $d$-going (Au-going) direction, $1.2<y<2.2$ ($-2.2<y<-1.2$) in the transverse-momentum ($p_T$) range from 1--7 GeV/$c$, and at midrapidity $|y|<0.35$ in the $p_T$ range below 7 GeV/$c$. The $\phi$ meson invariant yields and nuclear-modification factors as a function of $p_T$, rapidity, and centrality are reported. An enhancement of $\phi$ meson production is observed in the Au-going direction, while suppression is seen in the $d$-going direction, and no modification is observed at midrapidity relative to the yield in $p$$+$$p$ collisions scaled by the number of binary collisions. Similar behavior was previously observed for inclusive charged hadrons and open heavy flavor indicating similar cold-nuclear-matter effects.

8 data tables

Invariant yields of $\phi$ meson production as a function of $p_T$ at different $d$+Au centrality classes. Type B represents uncertainties that are correlated from point to point.

Invariant yields of $\phi$ meson production as a function of $p_T$ at different $d$+Au centrality classes. Type B represents uncertainties that are correlated from point to point.

Invariant yields of $\phi$ meson production as a function of $p_T$ at different $d$+Au centrality classes. Type B represents uncertainties that are correlated from point to point.

More…

Measurement of higher cumulants of net-charge multiplicity distributions in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 011901, 2016.
Inspire Record 1378005 DOI 10.17182/hepdata.146751

We report the measurement of cumulants ($C_n, n=1\ldots4$) of the net-charge distributions measured within pseudorapidity ($|\eta|<0.35$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. $C_1/C_2$, $C_3/C_1$) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of $C_1/C_2 = \mu/\sigma^2$ and $C_3/C_1 = S\sigma^3/\mu$ can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.

10 data tables

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

More…

Inclusive cross sections, charge ratio and double-helicity asymmetries for $\pi^+$ and $\pi^-$ production in $p$$+$$p$ collisions at $\sqrt{s}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 91 (2015) 032001, 2015.
Inspire Record 1315330 DOI 10.17182/hepdata.71403

We present the midrapidity charged pion invariant cross sections and the ratio of $\pi^-$-to-$\pi^+$ production ($5<p_T<13$ GeV/$c$), together with the double-helicity asymmetries ($5<p_T<12$ GeV/$c$) in polarized $p$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. The cross section measurements are consistent with perturbative calculations in quantum chromodynamics within large uncertainties in the calculation due to the choice of factorization, renormalization, and fragmentation scales. However, the theoretical calculation of the ratio of $\pi^-$-to-$\pi^+$ production when considering these scale uncertainties overestimates the measured value, suggesting further investigation of the uncertainties on the charge-separated pion fragmentation functions is needed. Due to cancellations of uncertainties in the charge ratio, direct inclusion of these ratio data in future parameterizations should improve constraints on the flavor dependence of quark fragmentation functions to pions. By measuring charge-separated pion asymmetries, one can gain sensitivity to the sign of $\Delta G$ through the opposite sign of the up and down quark helicity distributions in conjunction with preferential fragmentation of positive pions from up quarks and negative pions from down quarks. The double-helicity asymmetries presented are sensitive to the gluon helicity distribution over an $x$ range of $\sim$0.03--0.16.

3 data tables

Invariant cross section for $\pi^+$ and $\pi^-$ hadrons, as well as the statistical and systematic uncertainties. In addition, there is an absolute scale uncertainty of 9.6$\%$.

Double-helicity asymmetries and statistical uncertainties for $\pi^+$ and $\pi^-$ hadrons. The primary systematic uncertainties, which are fully correlated between points, are $1.4\times10^{-3}$ from relative luminosity and a $^{+7.0\%}_{-7.7\%}$ scaling uncertainty from beam polarization.

Ratio of charged pion cross section, as shown in Fig.6.


Closing the Door for Dark Photons as the Explanation for the Muon g-2 Anomaly

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 91 (2015) 031901, 2015.
Inspire Record 1313628 DOI 10.17182/hepdata.143253

The standard model (SM) of particle physics is spectacularly successful, yet the measured value of the muon anomalous magnetic moment $(g-2)_\mu$ deviates from SM calculations by 3.6$\sigma$. Several theoretical models attribute this to the existence of a "dark photon," an additional U(1) gauge boson, which is weakly coupled to ordinary photons. The PHENIX experiment at the Relativistic Heavy Ion Collider has searched for a dark photon, $U$, in $\pi^0,\eta \rightarrow \gamma e^+e^-$ decays and obtained upper limits of $\mathcal{O}(2\times10^{-6})$ on $U$-$\gamma$ mixing at 90% CL for the mass range $30<m_U<90$ MeV/$c^2$. Combined with other experimental limits, the remaining region in the $U$-$\gamma$ mixing parameter space that can explain the $(g-2)_\mu$ deviation from its SM value is nearly completely excluded at the 90% confidence level, with only a small region of $29<m_U<32$ MeV/$c^2$ remaining.

5 data tables

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

More…

Cross Section and Transverse Single-Spin Asymmetry of $\eta$ Mesons in $p^{\uparrow}+p$ Collisions at $\sqrt{s}=200$ GeV at Forward Rapidity

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 072008, 2014.
Inspire Record 1300542 DOI 10.17182/hepdata.64267

We present a measurement of the cross section and transverse single-spin asymmetry ($A_N$) for $\eta$ mesons at large pseudorapidity from $\sqrt{s}=200$~GeV $p^{\uparrow}+p$ collisions. The measured cross section for $0.5<p_T<5.0$~GeV/$c$ and $3.0<|\eta|<3.8$ is well described by a next-to-leading-order perturbative-quantum-chromodynamics calculation. The asymmetries $A_N$ have been measured as a function of Feynman-$x$ ($x_F$) from $0.2<|x_{F}|<0.7$, as well as transverse momentum ($p_T$) from $1.0<p_T<4.5$~GeV/$c$. The asymmetry averaged over positive $x_F$ is $\langle{A_{N}}\rangle=0.061{\pm}0.014$. The results are consistent with prior transverse single-spin measurements of forward $\eta$ and $\pi^{0}$ mesons at various energies in overlapping $x_F$ ranges. Comparison of different particle species can help to determine the origin of the large observed asymmetries in $p^{\uparrow}+p$ collisions.

4 data tables

The measured ETA meson cross section, E*D3(SIG)/DP**3, versus PT at forward rapidity. The statistical and systematic uncertainties are type-A and type-B uncertainties respectively.

ASYM(PEAK) and ASYM(BG) for ETA mesons measured as a function of XF in the range 0.3 < ABS(XF) < 0.7 from the 4X4B triggered dataset. The values represented are the weighted mean of the South and North MPC (Muon Piston Calorimeter). The uncertainties listed are statistical only.

ASYM for ETA mesons measured as a function of XF in the range 0.2 < ABS(XF) < 0.7. Uncertainties listed are those due to the statistics, the XF uncorrelated uncertainties due to extracting the yields, and the correlated relative luminosity uncertainty.

More…

Low-mass vector-meson production at forward rapidity in $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 052002, 2014.
Inspire Record 1296835 DOI 10.17182/hepdata.64159

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low mass vector meson, $\omega$, $\rho$, and $\phi$, production through the dimuon decay channel at forward rapidity ($1.2<|y|<2.2$) in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The differential cross sections for these mesons are measured as a function of both $p_T$ and rapidity. We also report the integrated differential cross sections over $1<p_T<7$ GeV/$c$ and $1.2<|y|<2.2$: $d\sigma/dy(\omega+\rho\rightarrow\mu\mu) = 80 \pm 6 \mbox{(stat)} \pm 12 \mbox{(syst)}$ nb and $d\sigma/dy(\phi\rightarrow\mu\mu) = 27 \pm 3 \mbox{(stat)} \pm 4 \mbox{(syst)}$ nb. These results are compared with midrapidity measurements and calculations.

3 data tables

Differential cross sections of (OMEGA + RHO) and PHI as functions of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.

Differential cross sections of (OMEGA + RHO) and PHI as functions of rapidity. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.

N(PHI) / ( N(OMEGA) + N(RHO) ) as a function of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.


Cross section for $b\bar{b}$ production via dielectrons in d$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 91 (2015) 014907, 2015.
Inspire Record 1296859 DOI 10.17182/hepdata.141276

We report a measurement of $e^+e^-$ pairs from semileptonic heavy-flavor decays in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Exploring the mass and transverse-momentum dependence of the yield, the bottom decay contribution can be isolated from charm, and quantified by comparison to {\sc pythia} and {\sc mc@nlo} simulations. The resulting $b\bar{b}$-production cross section is $\sigma^{d{\rm Au}}_{b\bar{b}}=1.37{\pm}0.28({\rm stat}){\pm}0.46({\rm syst})$~mb, which is equivalent to a nucleon-nucleon cross section of $\sigma^{NN}_{bb}=3.4\pm0.8({\rm stat}){\pm}1.1({\rm syst})\ \mu$b.

1 data table

$b\bar{b}$ cross section


Centrality dependence of low-momentum direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 91 (2015) 064904, 2015.
Inspire Record 1296308 DOI 10.17182/hepdata.142985

The PHENIX experiment at RHIC has measured the centrality dependence of the direct photon yield from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV down to $p_T=0.4$ GeV/$c$. Photons are detected via photon conversions to $e^+e^-$ pairs and an improved technique is applied that minimizes the systematic uncertainties that usually limit direct photon measurements, in particular at low $p_T$. We find an excess of direct photons above the $N_{\rm coll}$-scaled yield measured in $p$$+$$p$ collisions. This excess yield is well described by an exponential distribution with an inverse slope of about 240 MeV/$c$ in the $p_T$ range from 0.6--2.0 GeV/$c$. While the shape of the $p_T$ distribution is independent of centrality within the experimental uncertainties, the yield increases rapidly with increasing centrality, scaling approximately with $N_{\rm part}^\alpha$, where $\alpha=1.48{\pm}0.08({\rm stat}){\pm}0.04({\rm syst})$.

6 data tables

Ratio $R_{\gamma}$ as function of photon $p_T$ from the 2007 and 2010 data sets in minimum-bias Au+Au collisions, and the $R_{\gamma}$ in the combined 2007+2010 measurement.

Ratio $R_{\gamma}$ as function of photon $p_T$ for the combined 2007 and 2010 data sets in different centrality bins.

Direct photon $p_T$ spectra in different centrality bins.

More…

Heavy-quark production and elliptic flow in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 91 (2015) 044907, 2015.
Inspire Record 1296108 DOI 10.17182/hepdata.143115

We present measurements of electrons and positrons from the semileptonic decays of heavy-flavor hadrons at midrapidity ($|y|<$ 0.35) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ GeV. The data were collected in 2010 by the PHENIX experiment that included the new hadron-blind detector. The invariant yield of electrons from heavy-flavor decays is measured as a function of transverse momentum in the range $1<p_T^e<5$ GeV/$c$. The invariant yield per binary collision is slightly enhanced above the $p$$+$$p$ reference in Au$+$Au 0%--20%, 20%--40% and 40%--60% centralities at a comparable level. This may be a result of the interplay between initial-state Cronin effects, final-state flow, and energy loss for heavy-quark production at this low beam energy. The $v_2$ of electrons from heavy-flavor decays is nonzero when averaged between $1.3<p_T^e<2.5$ GeV/$c$ from $0<{\rm centrality}<40$% collisions at $\sqrt{s_{_{NN}}}=62.4$ GeV. For 20%--40% centrality collisions, the $v_2$ at $\sqrt{s_{_{NN}}}=62.4$ GeV is smaller than that for heavy flavor decays at $\sqrt{s_{_{NN}}}=200$ GeV. The $v_2$ of the electrons from heavy-flavor decay at the lower beam energy is also smaller than $v_2$ for pions. Both results indicate that the heavy-quarks interact with the medium formed in these collisions, but they may not be at the same level of thermalization with the medium as observed at $\sqrt{s_{_{NN}}}=200$ GeV.

14 data tables

Invariant yield of candidate electrons measured in Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV for different centrality bins. The yields are scaled by powers of 10 for clarity. The systematic uncertainty is shown as boxes and is, in many cases, comparable to the symbol size.

Cocktail prediction for photonic electron invariant yield. Invariant yield of (black dots) candidate electrons and (solid lines) electrons calculated from different photonic sources in Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV for MB events.

Invariant yield of heavy-flavor electrons measured in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV for different centrality bins. The yields are scaled by powers of 10 for clarity. The uncertainty bars (boxes) show the statistical (systematic) uncertainties.

More…

Measurement of long-range angular correlation and quadrupole anisotropy of pions and (anti)protons in central $d+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 114 (2015) 192301, 2015.
Inspire Record 1293053 DOI 10.17182/hepdata.141547

We present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central $d$$+$Au and minimum bias $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The charged hadron is measured at midrapidity $|\eta|<0.35$, and the energy is measured at large rapidity ($-3.7<\eta<-3.1$, Au-going direction). An enhanced near-side angular correlation across $|\Delta\eta| >$ 2.75 is observed in $d$$+$Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength $v_2$ for inclusive charged hadrons at midrapidity up to $p_T=4.5$ GeV/$c$. We also present the measurement of $v_2$ for identified $\pi^{\pm}$ and (anti)protons in central $d$$+$Au collisions, and observe a mass-ordering pattern similar to that seen in heavy ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from $p$$+$Pb at $\sqrt{s_{_{NN}}}=5.02$ TeV. The magnitude of the mass-ordering in $d$$+$Au is found to be smaller than that in $p$$+$Pb collisions, which may indicate smaller radial flow in lower energy $d$$+$Au collisions.

4 data tables

$c_2$ ($p_T$) for track lower-tower pairs from 0-5% $d$+Au collisions and $c_2$ ($p_T$) for pairs in minimum bias $p$+$p$ collisions times the dilution factor.

Measured $v_2$ for midrapidity charged tracks in 0-5% central $d$+Au at $\sqrt{s_{NN}}$ = 200 GeV using the event plane method.

Measured $v_2$ ($p_T$) for identified pions, each charged combined, 0-5% central $d$+Au collisions at RHIC.

More…

Inclusive double-helicity asymmetries in neutral pion and eta meson production in $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 012007, 2014.
Inspire Record 1282448 DOI 10.17182/hepdata.64716

Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, $A_{LL}$, for $\pi^0$ and $\eta$ production in $\sqrt{s} = 200$ GeV polarized $p$$+$$p$ collisions. Comparison of the $\pi^0$ results with different theory expectations based on fits of other published data showed a preference for small positive values of gluon polarization, $\Delta G$, in the proton in the probed Bjorken $x$ range. The effect of adding the new 2009 \pz data to a recent global analysis of polarized scattering data is also shown, resulting in a best fit value $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}} = 0.06^{+0.11}_{-0.15}$ in the range $0.05<x<0.2$, with the uncertainty at $\Delta \chi^2 = 9$ when considering only statistical experimental uncertainties. Shifting the PHENIX data points by their systematic uncertainty leads to a variation of the best-fit value of $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}}$ between $0.02$ and $0.12$, demonstrating the need for full treatment of the experimental systematic uncertainties in future global analyses.

9 data tables

PI0 ASYM(LL) measurements from 2005.

PI0 ASYM(LL) measurements from 2006.

PI0 ASYM(LL) measurements from 2009.

More…

Measurement of transverse-single-spin asymmetries for midrapidity and forward-rapidity production of hadrons in polarized p+p collisions at $\sqrt{s}=$200 and 62.4 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 90 (2014) 012006, 2014.
Inspire Record 1268155 DOI 10.17182/hepdata.143306

Measurements of transverse-single-spin asymmetries ($A_{N}$) in $p$$+$$p$ collisions at $\sqrt{s}=$62.4 and 200 GeV with the PHENIX detector at RHIC are presented. At midrapidity, $A_{N}$ is measured for neutral pion and eta mesons reconstructed from diphoton decay, and at forward rapidities, neutral pions are measured using both diphotons and electromagnetic clusters. The neutral-pion measurement of $A_{N}$ at midrapidity is consistent with zero with uncertainties a factor of 20 smaller than previous publications, which will lead to improved constraints on the gluon Sivers function. At higher rapidities, where the valence quark distributions are probed, the data exhibit sizable asymmetries. In comparison with previous measurements in this kinematic region, the new data extend the kinematic coverage in $\sqrt{s}$ and $p_T$, and it is found that the asymmetries depend only weakly on $\sqrt{s}$. The origin of the forward $A_{N}$ is presently not understood quantitatively. The extended reach to higher $p_T$ probes the transition between transverse momentum dependent effects at low $p_T$ and multi-parton dynamics at high $p_T$.

13 data tables

Neutral pion $A_N$ at $\sqrt{s} = 62.4$ GeV as a function of $x_F$ in pseudorapidity $3.1 < |\eta| < 3.5$, with statistical and systematic uncertainties.

Neutral pion $A_N$ at $\sqrt{s} = 62.4$ GeV as a function of $x_F$ in pseudorapidity $3.5 < |\eta| < 3.8$, with statistical and systematic uncertainties.

Neutral pion $A_N$ at $\sqrt{s}$ = 62.4 GeV as function of transverse momentum $p_T$.

More…

Heavy-flavor electron-muon correlations in $p+p$ and $d$+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 034915, 2014.
Inspire Record 1263517 DOI 10.17182/hepdata.142078

We report $e^\pm-\mu^\mp$ pair yield from charm decay measured between midrapidity electrons ($|\eta|<0.35$ and $p_T>0.5$ GeV/$c$) and forward rapidity muons ($1.4<\eta<2.1$ and $p_T>1.0$ GeV/$c$) as a function of $\Delta\phi$ in both $p$$+$$p$ and in $d$+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Comparing the $p$$+$$p$ results with several different models, we find the results are consistent with a total charm cross section $\sigma_{c\bar{c}} =$ 538 $\pm$ 46 (stat) $\pm$ 197 (data syst) $\pm$ 174 (model syst) $\mu$b. These generators also indicate that the back-to-back peak at $\Delta\phi = \pi$ is dominantly from the leading order contributions (gluon fusion), while higher order processes (flavor excitation and gluon splitting) contribute to the yield at all $\Delta\phi$. We observe a suppression in the pair yield per collision in $d$+Au. We find the pair yield suppression factor for $2.7<\Delta\phi<3.2$ rad is $J_{dA}$ = 0.433 $\pm$ 0.087 (stat) $\pm$ 0.135 (syst), indicating cold nuclear matter modification of $c\bar{c}$ pairs.

4 data tables

The fully-corrected like-sign-subtracted heavy flavor $e$-$\mu$ pair yield in $p$+$p$.

The fully corrected like-sign-subtracted heavy flavor $e$-$\mu$ pair yield in $d$+Au.

$J_{dA}$ plotted as a function of $\Delta\phi$.

More…