Investigation of nuclear charge symmetry by pion elastic scattering from H-3 and He-3

Dhuga, K.S. ; Berman, B.L. ; Briscoe, W.J. ; et al.
Phys.Rev.C 54 (1996) 2823-2830, 1996.
Inspire Record 433024 DOI 10.17182/hepdata.25746

We have measured differential cross sections for pion elastic scattering from H3 and He3 in the angular region near the minimum in the non-spin-flip amplitude. Data were acquired for incident pion energies of 180, 220, 256, and 295 MeV. Nuclear charge symmetry is investigated with the aid of several charge-symmetric ratios formed from combinations of measured cross sections. A particularly intriguing result is obtained from the superratio R, which is defined as R=dσ(π+3H)dσ(π−3H)/dσ(π+3He)dσ(π−3He). R is found to be greater than unity at 180 MeV and significantly smaller than unity at 256 MeV, with the transition occurring at around 210 MeV. The charge-symmetry prediction for this ratio (after allowance for the Coulomb force) is one, and is independent of energy and angle. © 1996 The American Physical Society.

8 data tables

Axis error includes +- 3/3 contribution.

Axis error includes +- 3/3 contribution.

Axis error includes +- 3/3 contribution.

More…

Elastic scattering of pions from H-3 and He-3 into the backward hemisphere

Matthews, S.K. ; Briscoe, W.J. ; Bennhold, C. ; et al.
Phys.Rev.C 51 (1995) 2534-2541, 1995.
Inspire Record 405001 DOI 10.17182/hepdata.25941

We have measured differential cross sections for the elastic scattering of charged pions from H3 and He3 into the backward hemisphere. Near the peak of the delta resonance, at Tπ=180 MeV, an angular distribution covering 114° to 168° in the laboratory extends our earlier measurements. At Tπ=142, 180, 220, and 256 MeV, we have measured an excitation function at angles approaching 170°. The cross sections for the reactions He3(π+,π+)3He, H3(π−,π−)3H show a rise at back angles which is not seen for He3(π−,π−)3He and H3(π+,π+)3H. There is a dip in the cross sections near 130° for Tπ=180 MeV.

4 data tables

No description provided.

No description provided.

No description provided.

More…

pi0 photoproduction on the proton for photon energies from 0.675-GeV to 2.875-GeV.

Dugger, M. ; Ritchie, Barry G. ; Ball, J.P. ; et al.
Phys.Rev.C 76 (2007) 025211, 2007.
Inspire Record 749989 DOI 10.17182/hepdata.51855

Differential cross sections for the reaction $\gamma p \to p \pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.

45 data tables

Differential cross section for indicent photon energy 675 MeV.

Differential cross section for indicent photon energy 725 MeV.

Differential cross section for indicent photon energy 775 MeV.

More…

Electroproduction of $\phi(1020)$ mesons at $1.4\leq Q^2\leq$ 3.8 GeV$^2$ measured with the CLAS spectrometer

The CLAS collaboration Santoro, J.P. ; Smith, E.S. ; Garc con, M. ; et al.
Phys.Rev.C 78 (2008) 025210, 2008.
Inspire Record 781974 DOI 10.17182/hepdata.50913

Electroproduction of exclusive $\phi$ vector mesons has been studied with the CLAS detector in the kinematical range $1.6\leq Q^2\leq 3.8$ GeV$^{2}$, $0.0\leq t^{\prime}\leq 3.6$ GeV$^{2}$, and $2.0\leq W\leq 3.0$ GeV. The scaling exponent for the total cross section as $1/(Q^2+M_{\phi}^2)^n$ was determined to be $n=2.49\pm 0.33$. The slope of the four-momentum transfer $t'$ distribution is $b_{\phi}=0.98 \pm 0.17$ GeV$^{-2}$. The data are consistent with the assumption of s-channel helicity conservation (SCHC). Under this assumption, we determine the ratio of longitudinal to transverse cross sections to be $R=0.86 \pm 0.24$. A 2-gluon exchange model is able to reproduce the main features of the data.

5 data tables

Axis error includes +- 18.6/18.6 contribution.

Axis error includes +- 18.6/18.6 contribution.

Axis error includes +- 18.6/18.6 contribution.

More…

Separated structure functions for the exclusive electroproduction of K+ Lambda and K+ Sigma0 final states.

The CLAS collaboration Ambrozewicz, P. ; Carman, D.S. ; Feuerbach, R.J. ; et al.
Phys.Rev.C 75 (2007) 045203, 2007.
Inspire Record 732363 DOI 10.17182/hepdata.4994

We report measurements of the exclusive electroproduction of $K^+\Lambda$ and $K^+\Sigma^0$ final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions $\sigma_T$, $\sigma_L$, $\sigma_{TT}$, and $\sigma_{LT}$ were extracted from the $\Phi$- and $\epsilon$-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first $\sigma_L/\sigma_T$ separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from $0.5\leq Q^2\leq 2.8$ GeV$^2$ and invariant energy from $1.6\leq W\leq 2.4$ GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the $\Lambda$ and $\Sigma^0$ hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.

531 data tables

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.

More…

Photoproduction of the omega meson on the proton at large momentum transfer.

The CLAS collaboration Battaglieri, M. ; Brunoldi, M. ; De Vita, R. ; et al.
Phys.Rev.Lett. 90 (2003) 022002, 2003.
Inspire Record 599053 DOI 10.17182/hepdata.19351

The differential cross section, $d\sigma/dt$ for $\omega$ meson exclusive photoproduction on the proton above the resonance region ($2.6<W<2.9$ GeV) was measured up to a momentum transfer $-t = 5$ GeV$^2$ using the CLAS detector at Jefferson Laboratory. The $\omega$ channel was identified by detecting a proton and $\pi^+$ in the final state and using the missing mass technique. While the low momentum transfer region shows the typical diffractive pattern expected from Pomeron and Reggeon exchange, at large $-t$ the differential cross section has a flat behavior. This feature can be explained by introducing quark interchange processes in addition to the QCD-inspired two-gluon exchange.

4 data tables

Differential cross section in the energy region 3.20 to 3.38 GeV.

Differential cross section in the energy region 3.38 to 3.56 GeV.

Differential cross section in the energy region 3.56 to 3.74 GeV.

More…

Eta photoproduction on the proton for photon energies from 0.75-GeV to 1.95-GeV

The CLAS collaboration Dugger, M. ; Ritchie, B.G. ; Ball, J. ; et al.
Phys.Rev.Lett. 89 (2002) 222002, 2002.
Inspire Record 603904 DOI 10.17182/hepdata.19406

Differential cross sections for γp→ηp have been measured with tagged real photons for incident photon energies from 0.75 to 1.95 GeV. Mesons were identified by missing mass reconstruction using kinematical information for protons scattered in the production process. The data provide the first extensive angular distribution measurements for the process above W=1.75  GeV. Comparison with preliminary results from a constituent quark model support the suggestion that a third S11 resonance with mass ∼1.8  GeV couples to the ηN channel.

6 data tables

Cross sections for photon energies 0.775 to 0.925 GeV.

Cross sections for photon energies 0.975 to 1.125 GeV.

Cross sections for photon energies 1.175 to 1.325 GeV.

More…

Photoproduction of Phi(1020) mesons on the proton at large momentum transfer.

The CLAS collaboration Anciant, E. ; Auger, T. ; Audit, G. ; et al.
Phys.Rev.Lett. 85 (2000) 4682-4686, 2000.
Inspire Record 528835 DOI 10.17182/hepdata.19491

The cross section for $\phi$ meson photoproduction on the proton has been measured for the first time up to a four-momentum transfer -t = 4 GeV^2, using the CLAS detector at the Thomas Jefferson National Accelerator Facility. At low four-momentum transfer, the differential cross section is well described by Pomeron exchange. At large four-momentum transfer, above -t = 1.8 GeV^2, the data support a model where the Pomeron is resolved into its simplest component, two gluons, which may couple to any quark in the proton and in the $\phi$.

1 data table

The differential PHI photoproduction cross section. The errors shown are the quadratic sum of the statistics and the systematic uncertainties which include 3 PCT for normalization, 5 PCT for acceptance and 5-15 PCT for background subtraction.


Measurement of the polarized structure function sigma(LT') for pion electroproduction in the Roper resonance region.

The CLAS collaboration Joo, K. ; Smith, L.C. ; Aznauryan, I.G. ; et al.
Phys.Rev.C 72 (2005) 058202, 2005.
Inspire Record 681275 DOI 10.17182/hepdata.25214

The polarized longitudinal-transverse structure function $\sigma_{LT^\prime}$ measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of $\sigma_{LT^\prime}$ in the $N(1440){1/2}^+$ (Roper) resonance region at $Q^2=0.40$ and 0.65 GeV$^2$ for both the $\pi^0 p$ and $\pi^+ n$ channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The $\sigma_{LT^\prime}(\pi^+ n)$ channel shows a large sensitivity to the Roper resonance multipoles $M_{1-}$ and $S_{1-}$ and provides new constraints on models of resonance formation.

58 data tables

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.1 GeV.

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.14 GeV.

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.18 GeV.

More…

Deeply virtual and exclusive electroproduction of omega mesons.

The CLAS collaboration Morand, L. ; Dore, D. ; Garcon, M. ; et al.
Eur.Phys.J.A 24 (2005) 445-458, 2005.
Inspire Record 681604 DOI 10.17182/hepdata.43499

The exclusive omega electroproduction off the proton was studied in a large kinematical domain above the nucleon resonance region and for the highest possible photon virtuality (Q2) with the 5.75 GeV beam at CEBAF and the CLAS spectrometer. Cross sections were measured up to large values of the four-momentum transfer (-t < 2.7 GeV2) to the proton. The contributions of the interference terms sigma_TT and sigma_TL to the cross sections, as well as an analysis of the omega spin density matrix, indicate that helicity is not conserved in this process. The t-channel pi0 exchange, or more generally the exchange of the associated Regge trajectory, seems to dominate the reaction gamma* p -> omega p, even for Q2 as large as 5 GeV2. Contributions of handbag diagrams, related to Generalized Parton Distributions in the nucleon, are therefore difficult to extract for this process. Remarkably, the high-t behaviour of the cross sections is nearly Q2-independent, which may be interpreted as a coupling of the photon to a point-like object in this kinematical limit.

85 data tables

Total cross sections and interference terms (TT and TL).

Differential cross sections DSIG/DT for Q**2 = 1.725 GeV**2 and W = 2.77 GeV.

Differential cross sections DSIG/DT for Q**2 = 1.752 GeV**2 and W = 2.48 GeV.

More…