The diffractive photoproduction of J/psi mesons is measured with the H1 detector at the ep collider HERA using an integrated luminosity of 78 pb^-1. The differential cross section d sigma(gamma p -> J/psi Y) / d t is studied in the range 2 < |t| < 30 GeV^2, where t is the square of the four-momentum transferred at the proton vertex. The cross section is also presented as a function of the photon-proton centre-of-mass energy W in three t intervals, spanning the range 50 < W < 200 GeV. A fast rise of the cross section with W is observed for each t range and the slope for the effective linear Pomeron trajectory is measured to be alpha^\prime= -0.0135 \pm 0.0074 (stat.) \pm 0.0051 (syst.) GeV^-2. The measurements are compared with perturbative QCD models based on BFKL and DGLAP evolution. The data are found to be compatible with s-channel helicity conservation.
The differential photoproduction cross section DSIG/DT for diffractive J/PSI production.
The J/PSI photoproduction cross section as a function of W for the ABS(T) range 2 to 5 GeV**2.
The J/PSI photoproduction cross section as a function of W for the ABS(T) range 5 to 10 GeV**2.
The first measurement of the p n -> d omega total cross section has been achieved at mean excess energies of Q = 28 and 57 MeV by using a deuterium cluster-jet target. The momentum of the fast deuteron was measured in the ANKE spectrometer at COSY-Juelich and that of the slow spectator proton p(sp) from the p d -> p(sp) d omega reaction in a silicon telescope placed close to the target. The cross sections lie above those measured for p p -> p p omega but seem to be below theoretical predictions.
Total cross sections after the P N --> DEUT OMEGA reaction just above threshold.
Exclusive production of π and K meson pairs in two photon collisions is measured with ALEPH data collected between 1992 and 2000. Cross-sections are presented as a function of cos θ ∗ and invariant mass, for | cos θ ∗ |<0.6 and invariant masses between 2.0 and 6.0 GeV/ c 2 (2.25 and 4.0 GeV/ c 2 ) for pions (kaons). The shape of the distributions are found to be well described by QCD predictions but the data have a significantly higher normalization.
Measured angular distribution for pion production.
Measured angular distribution for kaon production.
Measured cross section for pion production as a function of W.
For the first time at LEP the production of prompt photons is studied in the collisions of quasi-real photons using the OPAL data taken at e+e- centre-of-mass energies between 183 GeV and 209 GeV. The total inclusive production cross-section for isolated prompt photons in the kinematic range of photon transverse momentum larger than 3.0 GeV and absolute photon pseudorapidity less than 1 is determined to be 0.32 +- 0.04 (stat) +- 0.04 (sys) pb. Differential cross-sections are compared to the predictions of a next-to-leading-order (NLO) calculation.
The total prompt photon cross section in the kinematic range defined by theanti tagging condition.
Differential cross section in PT.
Differential cross section in ETARAP.
Exclusive rho rho production in two-photon collisions involving a single highly virtual photon is studied with data collected at LEP at centre-of-mass energies 89GeV < \sqrt{s} < 209GeV with a total integrated luminosity of 854.7pb^-1 The cross section of the process gamma gamma^* -> rho rho is determined as a function of the photon virtuality, Q^2 and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 1.2GeV^2 < Q^2 < 30GeV^2 and 1.1GeV < Wgg < 3GeV.
Production cross sections as a function of Q**2. The differential cross sections are corrected to the centre of each bin.
Production cross section for the two photon data as a function of Q**2.
Differential cross section for non-resonance and RHO0 RHO0 data corrected to the centre of each bin.
The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD analyses in the framework of the Standard Model to extract flavour separated parton distributions in the proton.
The NC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.
The CC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.
The NC cross section DSIG/DX for Q**2 > 1000 GeV**2. There is an additional 1.5 PCT normalization uncertainty.
The cross section for deeply virtual Compton scattering in the reaction ep -> e gamma p has been measured with the ZEUS detector at HERA using integrated luminosities of 95.0 pb-1 of e+p and 16.7 pb-1 of e-p collisions. Differential cross sections are presented as a function of the exchanged-photon virtuality, Q2, and the centre-of-mass energy, W, of the gamma*p system in the region 5 < Q2 < 100 GeV2 and 40 < W < 140 GeV. The measured cross sections rise steeply with increasing W. The measurements are compared to QCD-based calculations.
Measurements of the DVCS process cross section as a function of Q**2 at average W = 89 GeV. Data are given seperately for the E+ P and E- P interactions.
Measurements of the DVCS process cross section as a function of W at average Q**2 = 9.6 GeV**2. For the E+ P data sample.
Measurements of the DVCS process cross section as a function of W at average Q**2 = 9.6 GeV**2. For the E- P data sample.
The reaction e^+e^- -> e^+e^- proton antiproton is studied with the L3 detector at LEP. The analysis is based on data collected at e^+e^- center-of-mass energies from 183 GeV to 209 GeV, corresponding to an integrated luminosity of 667 pb^-1. The gamma gamma -> proton antiproton differential cross section is measured in the range of the two-photon center-of-mass energy from 2.1 GeV to 4.5 GeV. The results are compared to the predictions of the three-quark and quark-diquark models.
Total cross section for P PBAR production at a mean centre-of-mass energy of 197 GeV.
The cross section as a function of W for ABS(COS(THETA)) < 0.6.
The differential cross section as a function of COS(THETA*) for three W ranges.
Infrared and collinear safe event shape distributions and their mean values are determined in e+e- collisions at centre-of-mass energies between 45 and 202 GeV. A phenomenological analysis based on power correction models including hadron mass effects for both differential distributions and mean values is presented. Using power corrections, alpha_s is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD beta-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds beta_0 = 7.86 +/- 0.32 for the one loop coefficient of the beta-function or, assuming QCD, n_f = 4.75 +/- 0.44 for the number of active flavours. These values agree well with the QCD expectation of beta_0=7.67 and n_f=5. A direct measurement of the full logarithmic energy slope excludes light gluinos with a mass below 5 GeV.
1-THRUST distribution.
THRUST-MAJOR distribution.
THRUST-MINOR distribution.
Charmonium production in p – A collisions is a unique tool for the study of the interaction of bound c c states in nuclear matter. It can provide details on the basic features of the resonance formation mechanism and, in particular, on its non-perturbative aspects. In this Letter, we present an experimental study of charmonia and Drell–Yan production in proton–nucleus collisions at 450 GeV/ c . The results are analyzed in the framework of the Glauber model and lead to the values of the nuclear absorption cross-section σ abs pA for J / ψ and ψ ′. Then, we compare the J / ψ absorption in proton–nucleus and sulphur–uranium interactions, using NA38 data. We obtain that, for the J / ψ , σ abs pA and σ abs SU are compatible, showing that no sizeable additional suppression mechanism is present in S–U collisions, and confirming that the anomalous J / ψ suppression only sets in for Pb–Pb interactions.
The J/PSI production cross section times the branching ratio to MU+ MU- pernucleon-nucleon collision for the differential nuclear targets.
The PSI(3685) production cross section times the branching ratio to MU+ MU-per nucleon-nucleon collision for the differential nuclear targets.
The Drell Yan cross section, divided by the mass number A, and multiplied by the isospin correction factors in the mass interval 2.9 to 4.5 GeV.