We present cross sections for e+e−→hadrons, e+e−, and μ+μ− near 3095 MeV. The ψ(3095) resonance is established as having an assignment JPC=1−−. The mass is 3095 ±4 MeV. The partial width to electrons is Γe=4.8±0.6 keV and the total width Γ=69±15 keV. Total rates and interference measurements for the lepton channels are in accord with μ−e universality.
We have observed a second sharp peak in the cross section for e+e−→hadrons at a center-of-mass energy of 3.695±0.004 GeV. The upper limit of the full width at half-maximum is 2.7 MeV.
Angular distributions of the α-particle production differential cross section from the breakup of 6Li and 7Li projectiles incident on a 208Pb target have been measured at seven projectile energies between 29 and 52 MeV. The α-breakup cross section of 6Li was found to be systematically greater than that of 7Li across the entire energy range. These data have been compared with previously reported results and with the predictions of continuum-discretized coupled channels (CDCC) calculations including resonant and nonresonant projectile breakup. The present data compare well with previous measurements, while the CDCC calculations provide a reasonable prediction of the relative α-breakup cross sections but underpredict their absolute values. The calculations confirm that a major factor in the enhancement of the 6Li to 7Li α-breakup cross section is the difference between the α-breakup thresholds of the two isotopes. These results have implications for structural studies of light exotic nuclei based on elastic scattering.
We report measurement of the cross section of $e^+e^-\to \pi^+\pi^-\psi(2S)$ between 4.0 and $5.5 {\rm GeV}$, based on an analysis of initial state radiation events in a $980 \rm fb^{-1}$ data sample recorded with the Belle detector. The properties of the $Y(4360)$ and $Y(4660)$ states are determined. Fitting the mass spectrum of $\pi^+\pi^-\psi(2S)$ with two coherent Breit-Wigner functions, we find two solutions with identical mass and width but different couplings to electron-positron pairs: $M_{Y(4360)} = (4347\pm 6\pm 3) {\rm MeV}/c^2$, $\Gamma_{Y(4360)} = (103\pm 9\pm 5) {\rm MeV}$, $M_{Y(4660)} = (4652\pm10\pm 8) {\rm MeV}/c^2$, $\Gamma_{Y(4660)} = (68\pm 11\pm 1) \rm MeV$; and ${\cal{B}}[Y(4360)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4360)}^{e^+e^-} = (10.9\pm 0.6\pm 0.7) \rm eV$ and ${\cal{B}}[Y(4660)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4660)}^{e^+e^-} = (8.1\pm 1.1\pm 0.5) \rm eV$ for one solution; or ${\cal{B}}[Y(4360)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4360)}^{e^+e^-} = (9.2\pm 0.6\pm 0.6) \rm eV$ and ${\cal{B}}[Y(4660)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4660)}^{e^+e^-} = (2.0\pm 0.3\pm 0.2) \rm eV$ for the other. Here, the first errors are statistical and the second systematic. Evidence for a charged charmoniumlike structure at $4.05 {\rm GeV}/c^2$ is observed in the $\pi^{\pm}\psi(2S)$ intermediate state in the $Y(4360)$ decays.
We have observed a very sharp peak in the cross section for e+e−→hadrons, e+e−, and possibly μ+μ− at a center-of-mass energy of 3.105±0.003 GeV. The upper limit to the full width at half-maximum is 1.3 MeV.
The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC and corresponding to an integrated luminosity of 138 fb$^{-1}$. The selection is optimized for top quarks produced with large Lorentz boosts, resulting in nonisolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with a $\mathrm{t\bar{t}}$ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry of (0.42 $_{-0.69}^{+0.64}$)% is in good agreement with the standard model prediction at next-to-next-to-leading order in quantum chromodynamic perturbation theory with next-to-leading-order electroweak corrections. The result is also presented for two invariant mass ranges, 750-900 and $\gt$ 900 GeV.
Using a data sample collected with the CLEO II detector at CESR, we have searched for dipion transitions between pairs of $\Upsilon$ resonances at energies near the $\Upsilon(4S)$. We obtain upper limits $B(\Upsilon(4S)\to \Upsilon(2S)\pi^+\pi^-) < 3.9 \times 10^{-4}$ and $B(\Upsilon(4S)\to \Upsilon(1S)\pi^+\pi^-) < 1.2 \times 10^{-4}$. We also observe the transitions $\Upsilon(3S)\to \Upsilon(1S)$, $\Upsilon(3S)\to \Upsilon(2S)$, and $\Upsilon(2S)\to \Upsilon(1S)$, from which we measure the cross-sections for the radiative processes $e^+e^- \to \Upsilon(3S)\gamma$ and $e^+e^- \to \Upsilon(2S)\gamma$.
The azimuthal anisotropy of $\Upsilon$(1S) mesons in high-multiplicity proton-lead collisions is studied using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 8.16 TeV. The $\Upsilon$(1S) mesons are reconstructed using their dimuon decay channel. The anisotropy is characterized by the second Fourier harmonic coefficients, found using a two-particle correlation technique, in which the $\Upsilon$(1S) mesons are correlated with charged hadrons. A large pseudorapidity gap is used to suppress short-range correlations. Nonflow contamination from the dijet background is removed using a low-multiplicity subtraction method, and the results are presented as a function of $\Upsilon$(1S) transverse momentum. The azimuthal anisotropies are smaller than those found for charmonia in proton-lead collisions at the same collision energy, but are consistent with values found for $\Upsilon$(1S) mesons in lead-lead interactions at a nucleon-nucleon center-of-mass energy of 5.02 TeV.
We study the decays of the charmonium resonances $J/\psi$ and $\psi(3686)$ to the final states $\Xi^{-}\bar\Xi^{+}$, $\Sigma(1385)^{\mp}\bar\Sigma(1385)^{\pm}$ based on a single baryon tag method using data samples of $(223.7 \pm 1.4) \times 10^{6}$ $J/\psi$ and $(106.4 \pm 0.9) \times 10^{6}$ $\psi(3686)$ events collected with the BESIII detector at the BEPCII collider. The decay $\psi(3686)\rightarrow\Sigma(1385)^{\mp}\bar\Sigma(1385)^{\pm}$ is observed for the first time, and the measurements of the other processes, including the branching fractions and angular distributions, are in good agreement with and much more precise than the previously published results. Additionally, the ratios $\frac{{\cal{B}}(\psi(3686)\rightarrow\Xi^{-}\bar\Xi^{+})}{{\cal{B}}(J/\psi\rightarrow\Xi^{-}\bar\Xi^{+})}$, $\frac{{\cal{B}}(\psi(3686)\rightarrow\Sigma(1385)^{-}\bar\Sigma(1385)^{+})}{{\cal{B}}(J/\psi\rightarrow\Sigma(1385)^{-}\bar\Sigma(1385)^{+})}$ and $\frac{{\cal{B}}(\psi(3686)\rightarrow\Sigma(1385)^{+}\bar\Sigma(1385)^{-})}{{\cal{B}}(J/\psi\rightarrow\Sigma(1385)^{+}\bar\Sigma(1385)^{-})}$ are determined.
An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb$^{-1}$. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred $\mu$m to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons Z$_\mathrm{D}$, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with $m_\mathrm{Z_D}$ greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for $c\tau$(Z$_\mathrm{D}$) (varying with $m_\mathrm{Z_D}$) between 0.03 and ${\approx}$ 0.5 mm, and above ${\approx}$ 0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons.