Using a data sample with a total integrated luminosity of 10.0 pb$^{-1}$ collected at center-of-mass energies of 2.6, 3.07 and 3.65 GeV with BESII, cross sections for $e^+e^-$ annihilation into hadronic final states ($R$ values) are measured with statistical errors that are smaller than 1%, and systematic errors that are about 3.5%. The running strong interaction coupling constants $\alpha_s^{(3)}(s)$ and $\alpha_s^{(5)}(M_Z^2)$ are determined from the $R$ values.
R values.
Cross sections for e^+e^- -> ppbar have been measured at 10 center-of-mass energies from 2.0 to 3.07 GeV by the BESII experiment at the BEPC, and proton electromagnetic form factors in the time-like region have been determined.
Cross section and proton form factor measurements. The cross section quoted is the lowest order cross section corrected for initial and final state radiation and coulomb effects.
Inclusive momentum spectra and multiplicity distributions of charged particles measured with BESII detector at center of mass energies of 2.2,2.6,3.0,3.2,4.6 and 4.8 GeV are presented. Values of the second binomial moment, $R_2$, obtained from the multiplicity distributions are reported. These results are compared with both experimental data from high energy $e^+e^-$, $ep$ and $p\bar{p}$ experiments and QCD calculations.
Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 2.2 GeV.. Errors are statistical and systematic added in quadrature.
Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 2.6 GeV.. Errors are statistical and systematic added in quadrature.
Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 3.0 GeV.. Errors are statistical and systematic added in quadrature.
We report values of $R = \sigma(e^+e^-\to {hadrons})/\sigma(e^+e^-\to\mu^+\mu^-)$ for 85 center-of-mass energies between 2 and 5 GeV measured with the upgraded Beijing Spectrometer at the Beijing Electron-Positron Collider.
Measured values of R.
Using the upgraded Beijing Spectrometer (BESII), we have measured the total cross section for $e^+e^-$ annihilation into hadronic final states at center-of-mass energies of 2.6, 3.2, 3.4, 3.55, 4.6 and 5.0 GeV. Values of $R$, $\sigma(e^+e^-\to {hadrons})/\sigma(e^+e^-\to\mu^+\mu^-)$, are determined.
Data are corrected for acceptance and radiative effects.
A search is performed for the production of the ψ(2S) in e+e− annihilation at a center-of-mass energy of 4.03 GeV using the BES detector operated at the Beijing Electron Positron Collider (BEPC). The kinematic features of the reconstructed ψ(2S) signal are consistent with its being produced only in association with an energetic photon resulting from initial state radiation (ISR). Limits are placed on ψ(2S) production from the decay of unknown charmonia or metastable hybrids that might be produced in e+e− annihilations at 4.03 GeV. Under the assumption that the observed cross section for ψ(2S) production is due entirely to ISR, the partial width Γee of the ψ(2S) is measured to be 2.07±0.32keV.
PSI(UNSPEC) is considered as a new 3D2 charmonium state. CHI/C(UNSPEC) is considered as any unknown charmonium state. EXOTIC is considered as a metastable hybrid.
None
No description provided.
No description provided.
The Beijing Spectrometer (BES) experiment has observed purely leptonic decays of the Ds meson in the reaction e+e−→Ds+Ds− at a c.m. energy of 4.03 GeV. Three events are observed in which one Ds decays hadronically to φπ, K¯*0K, or K¯0K, and the other decays leptonically to μνμ or τντ. With the assumption of μ−τ universality, values of the branching fraction, B(Ds→μνμ)=(1.5−0.6−0.2+1.3+0.3)%, and the Ds pseudoscalar decay constant, fDs=(4.3−1.3−0.4+1.5+0.4)×102 MeV, are obtained.
No description provided.
In this table CONST is the pseudoscalar decay constant, f_[D/S].