In ultra-peripheral relativistic heavy-ion collisions, a photon from the electromagnetic field of one nucleus can fluctuate to a quark-antiquark pair and scatter from the other nucleus, emerging as a $\rho^0$. The $\rho^0$ production occurs in two well-separated (median impact parameters of 20 and 40 fermi for the cases considered here) nuclei, so the system forms a 2-source interferometer. At low transverse momenta, the two amplitudes interfere destructively, suppressing $\rho^0$ production. Since the $\rho^0$ decay before the production amplitudes from the two sources can overlap, the two-pion system can only be described with an entangled non-local wave function, and is thus an example of the Einstein-Podolsky-Rosen paradox. We observe this suppression in 200 GeV per nucleon-pair gold-gold collisions. The interference is $87% \pm 5% {\rm (stat.)}\pm 8%$ (syst.) of the expected level. This translates into a limit on decoherence due to wave function collapse or other factors, of 23% at the 90% confidence level.
Rapidity (left) and $M_{\pi\pi}$ (right) of the $\pi^{+}\pi^{-}$ distributions for the topology (exclusive $\rho^0$, top) and MB (Coulomb breakup, bottom) samples. The points with statistical error bars are the data, and the histograms are the simulations. The ’notch’ in the topology data around y = 0 is due to the explicit rapidity cut to remove cosmic-ray backgrounds.
Rapidity (left) and $M_{\pi\pi}$ (right) of the $\pi^{+}\pi^{-}$ distributions for the topology (exclusive $\rho^0$, top) and MB (Coulomb breakup, bottom) samples. The points with statistical error bars are the data, and the histograms are the simulations. The ’notch’ in the topology data around y = 0 is due to the explicit rapidity cut to remove cosmic-ray backgrounds.
Raw (uncorrected) ρ0 $t_{\perp}$-spectrum in the range 0.0 < |y| < 0.5 for the MB data. The points are data, with statistical errors. The dashed (filled) histogram is a simulation with an interference term (“Int”), while the solid histogram is a simulation without interference (“NoInt”). The handful of events histogrammed at the bottom of the plot are the wrong-sign ($\pi^{+}\pi^{+}+\pi^{-}\pi^{-}$) events, used to estimate the combinatorial background.
We report the measurement of charged $D^*$ mesons in inclusive jets produced in proton-proton collisions at a center of mass energy $\sqrt{s}$ = 200 GeV with the STAR experiment at RHIC. For $D^{*}$ mesons with fractional momenta $0.2 < z < 0.5$ in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be $N(D^{*+}+D^{*-})/N(\mathrm{jet}) = 0.015 \pm 0.008 (\mathrm{stat}) \pm 0.007 (\mathrm{sys})$. This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization.
D*+-/jet azimuthal correlations. Delta Phi represents the difference in azimuthal angle between D*+- (of 2<Pt<10 GeV/c) and the jet's (of 8<Pt<20 GeV/c) axis.
Production rate of D*+- mesons with fractional longitudinal momenta 0.2<z<0.5 (z = Pl(D*+-)/Ejet, Pl is the momentum projection on the jet axis and Ejet is the total jet energy) in inclusive jets of 11.5 Gev mean transverse energy.
Events with high energy isolated electrons, muons or tau leptons and missing transverse momentum are studied using the full e^\pm p data sample collected by the H1 experiment at HERA, corresponding to an integrated luminosity of 474 pb^{-1}. Within the Standard Model, events with isolated leptons and missing transverse momentum mainly originate from the production of single W bosons. The total single W boson production cross section is measured as 1.14 \pm 0.25 (stat.) \pm 0.14 (sys.) pb, in agreement with the Standard Model expectation. The data are also used to establish limits on the WW\gamma gauge couplings and for a measurement of the W boson polarisation.
Total single W boson production cross section.
Differential single W boson production cross section.
A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV^2 < Q^2 < 12 GeV^2, and low Bjorken x, 5x10^-6 < x < 0.02. The result is based on two data sets collected in dedicated runs by the H1 Collaboration at HERA at beam energies of 27.6 GeV and 920 GeV for positrons and protons, respectively. A combination with data previously published by H1 leads to a cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q^2 and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering.
Reduced cross section as measured in the SVX data sample for Q**2 = 0.20 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.
Reduced cross section as measured in the SVX data sample for Q**2 = 0.25 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.
Reduced cross section as measured in the SVX data sample for Q**2 = 0.35 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.
A measurement of the inclusive deep-inelastic neutral current e+p scattering cross section is reported in the region of four-momentum transfer squared, 12<=Q^2<=150 GeV^2, and Bjorken x, 2x10^-4<=x<=0.1. The results are based on data collected by the H1 Collaboration at the ep collider HERA at positron and proton beam energies of E_e=27.6 GeV and E_p=920 GeV, respectively. The data are combined with previously published data, taken at E_p=820 GeV. The accuracy of the combined measurement is typically in the range of 1.3-2%. A QCD analysis at next-to-leading order is performed to determine the parton distributions in the proton based on H1 data.
Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.
Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.
Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.
The production of jets is studied in deep-inelastic ep scattering at large negative four momentum transfer squared 150<Q^2<15000 GeV^2 using HERA data taken in 1999-2007, corresponding to an integrated luminosity of 395 pb^-1. Inclusive jet, 2-jet and 3-jet cross sections, normalised to the neutral current deep-inelastic scattering cross sections, are measured as functions of Q^2, jet transverse momentum and proton momentum fraction. The measurements are well described by perturbative QCD calculations at next-to-leading order corrected for hadronisation effects. The strong coupling as determined from these measurements is alpha_s(M_Z) = 0.1168 +/-0.0007 (exp.) +0.0046/-0.0030 (th.) +/-0.0016(pdf).
Normalised inclusive jet cross section in bins of $Q^{2}$.
Normalised 2-jet cross section in bins of $Q^{2}$.
Normalised 3-jet cross section in bins of $Q^{2}$.
We report results for $K/\pi$ fluctuations from Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. Our results for $K/\pi$ fluctuations in central collisions show little dependence on the incident energies studied and are on the same order as results observed by NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at $\sqrt{s_{NN}}$ = 12.3 and 17.3 GeV. We also report results for the collision centrality dependence of $K/\pi$ fluctuations as well as results for $K^{+}/\pi^{+}$, $K^{-}/\pi^{-}$, $K^{+}/\pi^{-}$, and $K^{-}/\pi^{+}$ fluctuations. We observe that the $K/\pi$ fluctuations scale with the multiplicity density, $dN/d\eta$, rather than the number of participating nucleons.
(Color online) The event-by-event $K/\pi$ ratio for 200 GeV Au+Au central collisions (0-5%) compared with the same quantity calculated from mixed events. The inset shows the ratio of the distribution from real events to that from mixed events. The errors shown are statistical.
(Color online) The event-by-event $K/\pi$ ratio for 200 GeV Au+Au central collisions (0-5%) compared with the same quantity calculated from mixed events. The inset shows the ratio of the distribution from real events to that from mixed events. The errors shown are statistical.
(Color online) Measured dynamical $K/\pi$ fluctuations in terms of σdyn for central collisions (0 - 5%) of 19.6, 62.4, 130, and 200 GeV Au+Au compared with the central collisions (0 - 3.5%) of Pb+Pb from NA49 [7] and the statistical hadronization (SH) model of Ref. [14]. The solid line represents the relationship of the incident energy dependence of $\sigma_{dyn}$ in central collisions to the collision centrality dependence of $\nu_{dyn,K\pi}$ at higher energies. Both statistical (vertical line with horizontal bar) and systematic (no vertical line) error bars are shown for the experimental data.
Inclusive non-diffractive photoproduction of rho(770)^0, K^*(892)^0 and phi(1020) mesons is investigated with the H1 detector in ep collisions at HERA. The corresponding average \gamma p centre-of-mass energy is 210 GeV. The mesons are measured in the transverse momentum range 0.5<p_T<7 GeV and the rapidity range |y_{lab}|<1. Differential cross sections are presented as a function of transverse momentum and rapidity, and are compared to the predictions of hadroproduction models.
Inclusive non-diffractive photoproduction cross sections in the specified kinematic region.
Ratios of cross sections.
Inclusive non-diffractive photoproduction invariant differential cross sections as a function of PT in the specified kinematic range.
We present a systematic analysis of two-pion interferometry in Au+Au collisions at $\sqrt{s_{\rm{NN}}}$ = 62.4 GeV and Cu+Cu collisions at $\sqrt{s_{\rm{NN}}}$ = 62.4 and 200 GeV using the STAR detector at RHIC. The multiplicity and transverse momentum dependences of the extracted femtoscopic radii are studied. The scaling of the apparent freeze-out volume with charged particle multiplicity is studied for the RHIC energy domain. The multiplicity scaling of the measured radii is found to be independent of colliding system and collision energy.
HBT parameters for all centralities of 62.4 GeV Au+Au
HBT parameters for 200 and 62.4 GeV Au+Au, 0-5%
Energy dependence of the pi- HBT parameters for central Au+Au, Pb+Pb, and Pb+Au collisions (AGS,SPS and RHIC) at midrapidity and k_T ~ 0.2-0.3 GeV/c.
The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2 < Q^2 < 100 GeV^2 and the inelasticity 0.1 < y < 0.6. The K_s and Lambda production cross sections and their ratios are determined. K_s production is compared to the production of charged particles in the same region of phase space. The Lambda - anti-Lambda asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data.
Visible cross section for the production of K0S and LAMBDA(BAR).
Ratio of strange baryon to meson production.
Ratio of K0S to charged hadron production.