This letter reports a measurement of the muon charge asymmetry from W Boson produced in proton-proton collisions at a centre-of-mass energy of 7 TeV with the ATLAS experiment at the LHC. The asymmetry is measured in the W Boson to muon decay mode as a function of the muon pseudorapidity using a data sample corresponding to a total integrated luminosity of 31 pb-1. The results are compared to predictions based on next-to-leading order calculations with various parton distribution functions. This measurement provides information on the u and d quark momentum fractions in the proton.
Hitherto unobserved long-lived massive particles with electric and/or colour charge are predicted by a range of theories which extend the Standard Model. In this paper a search is performed at the ATLAS experiment for slow-moving charged particles produced in proton-proton collisions at 7 TeV centre-of-mass energy at the LHC, using a data-set corresponding to an integrated luminosity of 34 pb-1. No deviations from Standard Model expectations are found. This result is interpreted in a framework of supersymmetry models in which coloured sparticles can hadronise into long-lived bound hadronic states, termed R-hadrons, and 95% CL limits are set on the production cross-sections of squarks and gluinos. The influence of R-hadron interactions in matter was studied using a number of different models, and lower mass limits for stable sbottoms and stops are found to be 294 and 309 GeV respectively. The lower mass limit for a stable gluino lies in the range from 562 to 586 GeV depending on the model assumed. Each of these constraints is the most stringent to date.
The production fractions of $\overline{B}_s^0$ and $\Lambda_b^0$ hadrons, normalized to the sum of $B^-$ and $\overline{B}^0$ fractions, are measured in 13 TeV pp collisions using data collected by the LHCb experiment, corresponding to an integrated luminosity of 1.67/fb. These ratios, averaged over the $b$-hadron transverse momenta from 4 to 25 GeV and pseudorapidity from 2 to 5, are $0.122 \pm 0.006$ for $\overline{B}_s^0$, and $0.259 \pm 0.018$ for $\Lambda_b^0$, where the uncertainties arise from both statistical and systematic sources. The $\Lambda_b^0$ ratio depends strongly on transverse momentum, while the $\overline{B}_s^0$ ratio shows a mild dependence. Neither ratio shows variations with pseudorapidity. The measurements are made using semileptonic decays to minimize theoretical uncertainties. In addition, the ratio of $D^+$ to $D^0$ mesons produced in the sum of $\overline{B}^0$ and $B^-$ semileptonic decays is determined as $0.359\pm0.006\pm 0.009$, where the uncertainties are statistical and systematic.
Differential cross sections for the reaction π−p→π0n were measured at nine incident-pion kinetic energies in the interval from 500 to 1300 MeV. The negative pion beam from the bevatron was focused on a liquidhydrogen target completely surrounded by a cubic array of six steel-plate spark chambers. The spark chambers were triggered on events with neutral final states. Charge-exchange events were identified from the one-shower and two-shower events in the spark-chamber pictures. By the Monte Carlo technique, the π0 distributions were calculated from the bisector distributions of the two-shower π0 events together with the observed γ-ray distributions of the one-shower π0 events. These π0 distributions were fitted with both Legendre-polynomial expansions and power-series expansions by the method of least squares. The extrapolated forward differential cross sections are in good agreement with the dispersion calculations. The Legendre coefficients for the differential cross sections in isospin state T=12 were obtained by combining our results with available data on π±p elastic scattering. In the light of existing phase-shift solutions, the behavior of these coefficients is discussed. The D5F5 interference term that peaks near 900 MeV is verified to be in isospin state T=12 only. We report here also the total neutral cross sections and the cross sections for the production of neutral multipion final states 2π0n and 3π0n. The 4π solid angle and the calibrated energy response of the spark chambers contribute to the accuracy of the results.
A measurement of jet substructure observables is presented using \ttbar events in the lepton+jets channel from proton-proton collisions at $\sqrt{s}=$ 13 TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Multiple jet substructure observables are measured for jets identified as bottom, light-quark, and gluon jets, as well as for inclusive jets (no flavor information). The results are unfolded to the particle level and compared to next-to-leading-order predictions from POWHEG interfaced with the parton shower generators PYTHIA 8 and HERWIG 7, as well as from SHERPA 2 and DIRE2. A value of the strong coupling at the Z boson mass, $\alpha_S(m_\mathrm{Z}) = $ 0.115$^{+0.015}_{-0.013}$, is extracted from the substructure data at leading-order plus leading-log accuracy.
An analysis of the decay $\Lambda_b \to J/\psi(\to\mu^+\mu^-)\Lambda(\to p \pi^-)$ decay is performed to measure the $\Lambda_b$ polarization and three angular parameters in data from pp collisions at $\sqrt{s} =$ 7 and 8 TeV, collected by the CMS experiment at the LHC. The $\Lambda_b$ polarization is measured to be 0.00 $\pm$ 0.06 (stat) $\pm$ 0.06 (syst) and the parity-violating asymmetry parameter is determined to be 0.14 $\pm$ 0.14 (stat) $\pm$ 0.10 (syst). The measurements are compared to various theoretical predictions, including those from perturbative quantum chromodynamics.
A search is presented for decays of Z and Higgs bosons to a J$/\psi$ meson and a photon, with the subsequent decay of the J$/\psi$ to $\mu^+\mu^-$. The analysis uses data from proton-proton collisions with an integrated luminosity of 35.9 fb$^{-1}$ at $\sqrt{s} =$ 13 TeV collected with the CMS detector at the LHC. The observed limit on the Z $\to$ J$/\psi \gamma$ decay branching fraction, assuming that the J$/\psi$ meson is produced unpolarized, is 1.4 $\times$ 10$^{-6}$ at 95% confidence level, which corresponds to a rate higher than expected in the standard model by a factor of 15. For extreme-polarization scenarios, the observed limit changes from -13.6 to +8.6% with respect to the unpolarized scenario. The observed upper limit on the branching fraction for H $\to$ J$/\psi \gamma$ where the J$/\psi$ meson is assumed to be transversely polarized is 7.6 $\times$ 10$^{-4}$, a factor of 260 larger than the standard model prediction. The results for the Higgs boson are combined with previous data from proton-proton collisions at $\sqrt{s} =$ 8 TeV to produce an observed upper limit on the branching fraction for H $\to$ J$/\psi \gamma$ that is a factor of 220 larger than the standard model value.
The first study of charm quark diffusion with respect to the jet axis in heavy ion collisions is presented. The measurement is performed using jets with $p_\mathrm{T}^\mathrm{jet}$$>$ 60 GeV and D$^0$ mesons with $p_\mathrm{T}^\mathrm{D}$$>$ 4 GeV in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV, recorded by the CMS detector at the LHC. The radial distribution of D$^0$ mesons with respect to the jet axis is sensitive to the production mechanisms of the meson, as well as to the energy loss and diffusion processes undergone by its parent parton inside the strongly interacting medium produced in PbPb collisions. When compared to Monte Carlo event generators, the radial distribution in pp collisions is found to be well-described by PYTHIA, while the slope of the distribution predicted by SHERPA is steeper than that of the data. In PbPb collisions, compared to the pp results, the D$^0$ meson distribution for 4 $<$$p_\mathrm{T}^\mathrm{D}$$<$ 20 GeV hints at a larger distance on average with respect to the jet axis, reflecting a diffusion of charm quarks in the medium created in heavy ion collisions. At higher $p_\mathrm{T}^\mathrm{D}$, the PbPb and pp radial distributions are found to be similar.
An inclusive search for the standard model Higgs boson ($\mathrm{H}$) produced with large transverse momentum ($p_\mathrm{T}$) and decaying to a bottom quark-antiquark pair ($\mathrm{b}\overline{\mathrm{b}}$) is performed using a data set of pp collisions at $\sqrt{s}=$ 13 TeV collected with the CMS experiment at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. A highly Lorentz-boosted Higgs boson decaying to $\mathrm{b}\overline{\mathrm{b}}$ is reconstructed as a single, large radius jet and is identified using jet substructure and dedicated $\mathrm{b}$ tagging techniques. The method is validated with $\mathrm{Z}\to\mathrm{b}\overline{\mathrm{b}}$ decays. The $\mathrm{Z}\to\mathrm{b}\overline{\mathrm{b}}$ process is observed for the first time in the single-jet topology with a local significance of 5.1 standard deviations (5.8 expected). For a Higgs boson mass of 125 GeV, an excess of events above the expected background is observed (expected) with a local significance of 1.5 (0.7) standard deviations. The measured cross section times branching fraction for production via gluon fusion of $\mathrm{H} \rightarrow \mathrm{b}\overline{\mathrm{b}}$ with $p_\mathrm{T} > $450 GeV and in the pseudorapidity range $-$2.5 $< \eta <$ 2.5 is 74 $\pm$ 48 (stat) $_{-10}^{+17}$ (syst) fb, which is consistent within uncertainties with the standard model prediction.
A search is presented for dark matter in proton-proton collisions at a center-of-mass energy of $\sqrt{s} =$ 13 TeV using events with at least one high transverse momentum ($p_\mathrm{T}$) muon, at least one high-$p_\mathrm{T}$ jet, and large missing transverse momentum. The data were collected with the CMS detector at the CERN LHC in 2016 and 2017, and correspond to an integrated luminosity of 77.4 fb$^{-1}$. In the examined scenario, a pair of scalar leptoquarks is assumed to be produced. One leptoquark decays to a muon and a jet while the other decays to dark matter and low-$p_\mathrm{T}$ standard model particles. The signature for signal events would be significant missing transverse momentum from the dark matter in conjunction with a peak at the leptoquark mass in the invariant mass distribution of the highest $p_\mathrm{T}$ muon and jet. The data are observed to be consistent with the background predicted by the standard model. For the first benchmark scenario considered, dark matter masses up to 500 GeV are excluded for leptoquark masses $M_\mathrm{LQ}$ $\approx$ 1400 GeV, and up to 300 GeV for $M_\mathrm{LQ}$ $\approx$ 1500 GeV. For the second benchmark scenario, dark matter masses up to 600 GeV are excluded for $M_\mathrm{LQ}$ $\approx$ 1400 GeV.