$\{pi}-p$ interactions at 1.59 GeV/c

Alitti, J. ; Baton, J.P. ; Berthelot, A. ; et al.
Nuovo Cim. 29 (1963) 515, 1963.
Inspire Record 851185 DOI 10.17182/hepdata.980

Report on the investigation of interactions in π−p collisions at a pion momentum of 1.59 GeV/c, by means of the 50 cm Saclay liquid hydrogen bubble chamber, operating in a magnetic field of 17.5 kG. The results obtained concern essentially the elastic scattering and the inelastic scattering accompanied by the production of either a single pion in π−p→ pπ−π0 and nπ−π+ interactions, or by more than one pion in four-prong events. The observed angular distribution for the elastic scattering in the diffraction region, can be approximated by an exponential law. From the extrapolated value, thus obtained for the forward scattering, one gets σel= (9.65±0.30) mb. Effective mass spectra of π−π0 and π−π+ dipions are given in case of one-pion production. Each of them exhibits the corresponding ρ− or ρ0 resonances in the region of ∼ 29μ2 (μ = mass of the charged pion). The ρ peaks are particularly conspicuous for low momentum transfer (Δ2) events. The ρ0 distribution presents a secondary peak at ∼31μ2 due probably to the ω0 → π−π+ process. The branching ratio (ω0→ π+π−)/(ω0→ π+π− 0) is estimated to be ∼ 7%. The results are fairly well interpreted in the frame of the peripheral interaction according to the one-pion exchange (OPE) model, Up to values of Δ2/μ2∼10. In particular, the ratio ρ−/ρ0 is of the order of 0.5, as predicted by this model. Furthermore, the distribution of the Treiman-Yang angle is compatible with an isotropic one inside the ρ. peak. The distribution of\(\sigma _{\pi ^ + \pi ^ - } \), as calculated by the use of the Chew-Low formula assumed to be valid in the physical region of Δ2, gives a maximum which is appreciably lower than the value of\(12\pi \tilde \lambda ^2 = 120 mb\) expected for a resonant elastic ππ scattering in a J=1 state at the peak of the ρ. However, a correcting factor to the Chew-Low formula, introduced by Selleri, gives a fairly good agreement with the expected value. Another distribution, namely the Δ2 distribution, at least for Δ2 < 10 μ2, agrees quite well with the peripheral character of the interaction involving the ρ resonance. π− angular distributions in the rest frame of the ρ exhibit a different behaviour for the ρ− and for the ρ0. Whereas the first one is symmetrical, as was already reported in a previous paper, the latter shows a clear forward π− asymmetry. The main features of the four-prong results are: 1) the occurrence of the 3/2 3/2 (ρπ+) isobar in π−p → pπ+π−π− events and 2) the possible production of the ω0→ π+π−π0 resonance in π−p→ pπ−π+π−π0 events. No ρ’s were observed in four-prong events.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Peripheral Dipion Production by Pions of 12 and 18 GeV/c

Jones, Lawrence W. ; Bleuler, E. ; Caldwell, D.O. ; et al.
Phys.Rev. 166 (1968) 1405-1430, 1968.
Inspire Record 944942 DOI 10.17182/hepdata.26526

A spark-chamber experiment on the peripheral production of 9245 pion pairs by 12- and 18-GeV/c incident pions is reported and analyzed in terms of a one-pion-exchange model in which the final state at the nucleon vertex contains generally one or more pions. The relevant dynamics and kinematics appropriate to this problem are reviewed, and the experimental and analysis techniques giving good resolution and detection-bias correction are discussed in some detail. From the results, fair agreement is found between the data and the one-pion-exchange calculation of the ρ0 production cross sections and of the associated missing-mass spectra. The ρ0 is found to be consistent with a single peak, and no evidence of peak splitting is observed. A search for a narrow s-wave dipion resonance is made with negative results. Normalizing to the ρ0 meson, the s-wave π+π− scattering cross section is computed from the abundant low-dipion-mass events, giving a cross section falling smoothly from 50 mb (300 MeV) to about 20 mb (600 MeV). No evidence of an s-wave resonance is found in this range of energies. Below 450 MeV, the pion-pion scattering asymmetry favors backward scattering (by 2½ standard deviations), which is consistent with a negative and falling J=T=0 phase shift. The extrapolated forward-backward asymmetry and the s-wave cross section are both consistent with a J=T=0 phase shift near|90°| at about 750 MeV.

6 data tables

Dipion production cross section under RHO resonance. Errors are statistical only.

Dipion production cross section under RHO resonance. Errors are statistical only.

RHO0 cross section. Errors are statistical only.

More…

Electroproduction of pions near the $\Delta(1236)$ isobar and the form-factor $G^*_M(q^2)$ of the $({\gamma} N\Delta)$ vertex

Bartel, W. ; Dudelzak, B. ; Krehbiel, H. ; et al.
Phys.Lett.B 28 (1968) 148-151, 1968.
Inspire Record 52791 DOI 10.17182/hepdata.45279

The cross section for inelastic electron-proton scattering was measured at incident electron energies of 1.5 to 6 GeV by magnetic analysis of the scattered electrons at angles between 10° and 35°. For invariant masses of the hardonic final state W ⩽ 1.4 GeV. the measured spectra are compared with theoretical predictions for electroproduction of the Δ(1236) isobar. The magnetic dipole transition form factor G ∗ M ( q 2 ) of the (γ N Δ)-vertex is derived for momentum transfers q 2 = 0.2 − 2.34 (GeV/ c ) 2 ard found to decrease more rapidly with q 2 than the proton form factors.

1 data table

Axis error includes +- 0.0/0.0 contribution.


Electromagnetic form-factors of the proton between 5 and 50 1/fm-squared

Berger, Christoph ; Gersing, E. ; Knop, G. ; et al.
Phys.Lett.B 28 (1968) 276-278, 1968.
Inspire Record 56842 DOI 10.17182/hepdata.29174

The external beam of the 2.5 GeV-electron-synchrotron has been used to measre elastic electron proton scattering at four-momentum-transfers between 15 and 50 fm −2 . By combining these results with measurements at small angles at DESY, we have obtained the electric and magnetic form factors separately. Their ratio shows a deviation from the scaling law.

2 data tables

No description provided.

No description provided.


MUON PROTON INELASTIC SCATTERING q**2 LESS THAN 1.2-GeV/c-**2

Dieterle, B. ; Braunstein, T. ; Cox, Jack ; et al.
Phys.Rev.Lett. 23 (1969) 1187-1190, 1969.
Inspire Record 54876 DOI 10.17182/hepdata.21667

The inelastic scattering of muons has been measured using positive muons of momentum 10 GeV/c incident upon a liquid-hydrogen target. We present values of the differential cross section and of the virtual photon-photon absorption cross section for |q| in the range 0.05 to 1.2 (GeV/c)2 and for equivalent photon laboratory energies of 0.6 to 6.5 GeV.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Dependence of nu nucleus cross-sections on the mass number

Borer, K. ; Hahn, B. ; Hofer, H. ; et al.
Phys.Lett.B 30 (1969) 572-575, 1969.
Inspire Record 63243 DOI 10.17182/hepdata.50061

High energy v -nucleus cross sections have been compared for Pb, Fe, Al and C as target nuclei, exposed to the CERN v -beam. The events with θ vμ < 29 0 and p μ ⪆ 1 GeV /c have rates in the ratio of the mass number of the nuclei. Also a restricted sample with q 2 ⪅ 0.1 (GeV/ c ) 2 and θ vμ < 5 0 does not reveal a theoretically predicted deviation from A -proportionality, although due to the limited statistical accuracy in this restricted sample an “ A 2 3 - contribution ” of several tenths cannot be excluded either.

4 data tables

Only statistical error is presented.

Only statistical error is presented.

Only statistical error is presented.

More…

Production of xi- and antixi+ particles in k+ p collisions at 12.7 gev/c

Stone, S.L. ; Berlinghieri, J.C. ; Bromberg, C. ; et al.
Phys.Lett.B 32 (1970) 515-518, 1970.
Inspire Record 63098 DOI 10.17182/hepdata.28710

The cross section for the production of Ξ + particles in K + p interactions at 12.7 GeV/ c is 10 ± 3 μ b; the Ξ − production cross section is 2.5 ± 1.0 μ b; the upper limit on Ω − or Ω + production is 0.4 μb. The Ξ − are produced preferentially in the backward direction in the CM system while the Ξ + are produced mainly forward. The mass and lifetime of the Ξ + agree with the accepted values for the Ξ − hyperon.

1 data table

Cross sections have been corrected for the detection probability of all observed hyperons involved in these reactions.


Neutron-proton and neutron-deuteron total cross-sections at 4.0 and 5.7 gev/c

Parker, E.F. ; Gustafson, H.Richard ; Jones, Lawrence W. ; et al.
Phys.Lett.B 31 (1970) 246-249, 1970.
Inspire Record 63208 DOI 10.17182/hepdata.6170

The np and nd total cross sections have been measured directly with a neutron beam with momenta of 4.0 ± 0.6 and 5.7 ± 0.6 GeV/ c . The data are compared with the previous nucleon-nucleon and nucleon-deuteron results, and the deuteron screening term was also evaluated. The measured total cross section are 43.1 ± 0.6 and 80.3 ± 1.9 mb at 4.0 GeV/ c and 42 ± 0.6 and 77.8 ± 1.3 mb at 5.7 GeV/ c .

3 data tables

No description provided.

No description provided.

No description provided.


MEASUREMENT OF P P ---> P X BETWEEN 50-GEV/C AND 400-GEV/C.

Abe, K. ; De Lillo, T. ; Robinson, B. ; et al.
Phys.Rev.Lett. 31 (1973) 1527-1530, 1973.
Inspire Record 81796 DOI 10.17182/hepdata.50301

We present measurements of the invariant cross section for the inclusive reaction p+p→p+X in the region 0.14<|t|<0.38 GeV2, 100<s<750 GeV2, and 0.80<x<0.93.

1 data table

The cross sections are fitted by the formula CONST(C=A)*EXP(SLOPE*T)*(1+CO NST(C=B)/SQRT(S)).


Production of high transverse momentum particles in p p collisions in the central region at the CERN ISR

The British-Scandinavian ISR collaboration Alper, B. ; Boggild, H. ; Jarlskog, G. ; et al.
Phys.Lett.B 44 (1973) 521-526, 1973.
Inspire Record 85256 DOI 10.17182/hepdata.28095

The inclusive production al all charged particles of transverse momentum p T between 1.5 and 4.4 GeV/ c at centre of mass angles 90° and 59.4° from p-p-collisions with √ s = 44 and 53 GeV has been measured. No strong energy dependence is observed for these transverse momenta.

6 data tables

Errors are statistical only.

Errors are statistical only.

Errors are statistical only.

More…