Date

Elastic scattering, pion production, and annihilation into pions in antiproton-proton interactions at 5.7 GeV/c

Böckmann, K. ; Nellen, B. ; Paul, E. ; et al.
Nuovo Cim.A 42 (1966) 954-996, 1966.
Inspire Record 1185317 DOI 10.17182/hepdata.1061

An extensive investigation of antiproton-proton interactions at 5.7 GeV/c without strange-particle production was carried out using a hydrogen bubble chamber. Cross-sections for different channels are given and discussed. The reliability of the analysis was checked using artificially generated events. The cross-sections for elastic scattering, for all processes involving annihilation, and for all other inelastic processes are respectively σel=(16.3±0.6)mb,σannlbil=(22.5±2.0)mb, σinel=(24.8±2.0)mb. TheN * 1:38 is present both in the single and multiple pion production channels. For the reaction MediaObjects/11539_2007_Article_BF02720569_f1.jpg a cross-section of (1.05±0.21) mb was obtained. Cross-sections forN * 1238 production in other channels are also given. Some indication of the presence ofI=1/2 isobars was found in the nucleon-pion and the nucleon-two-pion systems. The inelastic nonannihilation reactions were found to be strongly peripheral. The one-pion exchange model including either a form factor or corrections for absorption was applied to the reaction MediaObjects/11539_2007_Article_BF02720569_f2.jpg . Neither version of the model could correctly account for all features of the reaction. The average number of pions in the annihilation was found to be 7.3±0.6. The presence of an asymmetry in the angular distribution of the charged pions was confirmed at this energy; it is due mostly to high-energy pions. The production of ρ and ω mesons was observed in various annihilation channels. Rates of up to 80% for ρ production and up to 15% for ω production were obtained by fitting phase-space and Breit-Wigner curves to the effective-mass distributions of different channels.

5 data tables

No description provided.

More…

DECAY DISTRIBUTION OF HIGH TRANSVERSE MOMENTUM RHO MESONS

Heppelmann, S. ; Blazey, G.C. ; Baller, B. ; et al.
Phys.Rev.Lett. 55 (1985) 1824-1827, 1985.
Inspire Record 221964 DOI 10.17182/hepdata.20301

The exclusive process π−p→ρ−p has been measured at 90° c.m. with an incident pion momentum of 9.9 GeV/c. We present data on the angular dependence of the decay ρ−→π−π0. We observe a strong azimuthal dependence in the decay in the c.m. helicity frame of the ρ. Such an azimuthal dependence is not compatible with SU(6) valence-quark perturbation calculations.

2 data tables

No description provided.

No description provided.


DIFFERENTIAL CROSS-SECTION OF THE pi+ p ---> K+ SIGMA+ (1385) REACTION AT 12-GeV/c

The Dubna-Serpukhov-Baku-Bratislava-Kosice-Minsk-Samarkand-Tbilisi collaboration Bitsadze, G.S. ; Budagov, Yu.A. ; Vinogradov, V.B. ; et al.
JINR-P1-84-658, 1984.
Inspire Record 207769 DOI 10.17182/hepdata.9877

None

7 data tables

Axis error includes +- 0.0/0.0 contribution (?////NOT GIVEN).

Axis error includes +- 0.0/0.0 contribution (?////NOT GIVEN).

No description provided.

More…

EXPERIMENTAL STUDY OF THE pi+ p ---> K+ SIGMA+ REACTION AT 12-GeV/c

The Dubna-Serpukhov-Baku-Bratislava-Gomel-Yerevan-Kiev-Kosice- Minsk-Samarkand-Tbilisi collaboration Bitsadze, G.S. ; Budagov, Yu.A. ; Vinogradov, V.B. ; et al.
Nucl.Phys.B 260 (1985) 497-509, 1985.
Inspire Record 207765 DOI 10.17182/hepdata.33721

The results of the study of the π + p→K + ∑ + (1) and π + p→K + ∑ + (1385) (2) reactions at 12 GeV/ c are presented. The differential cross sections d σ /d t in| t min |<| t |<0.8 (GeV/ c ) 2 momentum transfer range are measured. The ∑ + polarisation for | t |<0.5 (GeV/ c ) 2 for reaction (1) is defined. Binary reactions (1) and (2) were selected by analyzing the missing mass spectra for the forward emitted fast K + meson. The total cross sections in the studied momentum transfer range are 20.2±2.4 μ b and 7.3±1.1 μ b for the reactions (1) and (2) respectively. The experimental results are compared with the predictions of the Regge models which take into account rescattering and secondary singularities.

4 data tables

SYSTEMATIC ERRORS INCLUDED.

No description provided.

No description provided.

More…

Soft $\pi^- p$ and $p p$ Elastic Scattering in the Energy Range 30-{GeV} to 345-{GeV}

Burq, J.P. ; Chemarin, M. ; Chevallier, M. ; et al.
Nucl.Phys.B 217 (1983) 285-335, 1983.
Inspire Record 182455 DOI 10.17182/hepdata.7556

Differential cross sections for π − p and pp elastic scattering have been measured at incident momenta ranging from 30 to 345 GeV and in the t range 0.002 (GeV/ c ) 2 ⩽ | t | ⩽ 0.04 (GeV/ c ) 2 . From the analysis of the data, the ratio ϱ ( t = 0) of the real to the imaginary parts of the forward scattering amplitude was determined together with the logarithmic slope b of the diffraction cone.

13 data tables

No description provided.

No description provided.

No description provided.

More…

An Experimental Study of Large Angle Elastic Scattering of Charged Mesons and Anti-protons on Protons at 20-{GeV}/$c$ and 30-{GeV}/$c$

The Annecy(LAPP)-CERN-Bohr Inst-Genoa-Oslo-London collaboration Baglin, C. ; Bock, R. ; Brobakken, K. ; et al.
Nucl.Phys.B 216 (1983) 1-39, 1983.
Inspire Record 180922 DOI 10.17182/hepdata.34020

A description is given of an experiment to study elastic scattering of π ± , K ± and p on protons at c.m. scattering angles from 45° to 100° at incident laboratory momenta 20 GeV/ c and 30 GeV/ c . The corresponding t range is from −6.2 (GeV/ c ) 2 to −28 (GeV/ c ) 2 . There are no previous observations for these reactions in this t range. High intensity and large geometrical acceptance were required in order to measure the low cross sections. The experiment used a double-arm spectrometer. MWPCs were used for reconstruction, and threshold and differential Čerenkov counters for identification. Scintillation counters, Čerenkov counters and a hadron calorimeter were used in the trigger. The trigger logic utilized specially designed matrices and a hard wired microprocessor. The π − p elastic scattering cross sections follow approximately the dimensional counting rule from 3.5 GeV/ c .and up to 30 GeV/ c . The cross sections decrease by seven orders of magnitude in this energy range. The data is compared to quark models. None of these models give a comprehensive description of the results. However, some modifications to these models improve their consistency with the data.

8 data tables

EARLIER RESULTS GIVEN IN 'A'.

No description provided.

No description provided.

More…

Evidence for a New Pseudoscalar Meson

Bonesini, M. ; Donald, R.A. ; Edwards, D.N. ; et al.
Phys.Lett.B 103 (1981) 75-78, 1981.
Inspire Record 170357 DOI 10.17182/hepdata.31149

Performing a PWA of the π − π − π + system over the −t p/p range 0.2 to 0.4 GeV 2 we find evidence for a J P = 0 − , J G =1 − meson of mass 1342 ± 20 MeV and width 220 ±70 MeV decaying into ϵπ. This state is produced by natural parity exchange with a slope similar to that of elastic scattering. It can be interpreted as a radial excitation of the π meson (π′).

1 data table

INTEGRATING EXTRAPOLATED EXPONENTIAL FIT GIVES A TOTAL CROSS SECTION OF ABOUT 54 MUB.


Study of the Charge Exchange Reactions $\pi^- p \to (\pi^0$, $\eta$, $\eta^\prime$) $n$ at 63-{GeV}

The ACCMOR collaboration Daum, C. ; Hertzberger, L. ; Hoogland, W. ; et al.
Z.Phys.C 8 (1981) 95, 1981.
Inspire Record 156266 DOI 10.17182/hepdata.49658

None

4 data tables

INCLUDING SYSTEMATIC ERRORS.

STATISTICAL ERRORS ONLY.

STATISTICAL ERRORS ONLY.

More…

Large Angle Elastic Scattering of Charged Pions on Protons at 20-{GeV}/c and 30-{GeV}/c Incident Momenta

The Annecy(LAPP)-CERN-Bohr Inst-Genoa-Oslo-London collaboration Almas, R. ; Baglin, C. ; Bock, R. ; et al.
Phys.Lett.B 93 (1980) 199-202, 1980.
Inspire Record 152838 DOI 10.17182/hepdata.27195

Elastic cross-section measurements are presented for π ± −p at 20 GeV/ c and π − −p at 30 GeV/ c incident momenta in the large angle region (50° to 90° in the c.m. system). The data are compared with published lower energy elastic cross sections. A test is made of the dimensional counting rules for π ± −p elastic scattering and some indication of a deviation from this rule is observed in the π − −p case. A comparison is also made with the predictions of the constituent interchange model. Although the broad features of the predictions are confirmed, there are some important discrepancies. Finally, the predictions of the model due to Preparata and Soffer are also compared with the new data.

3 data tables

No description provided.

THE UPPER LIMIT QUOTED WHEN NO EVENTS OBSERVED IS THE CROSS SECTION CORRESPONDING TO ONE DETECTED EVENT.

THE UPPER LIMIT QUOTED WHEN NO EVENTS OBSERVED IS THE CROSS SECTION CORRESPONDING TO ONE DETECTED EVENT.


Forward A2+ in Two-dimensions Production in $\pi^+ p \to K^+ \bar{K}(s$)0 $p$ at 12.7-{GeV}/$c$

Hyams, B. ; Jones, C. ; Weilhammer, P. ; et al.
Nucl.Phys.B 146 (1978) 303-326, 1978.
Inspire Record 132236 DOI 10.17182/hepdata.34849

Approximately 350 A 2 + events have been observed in the reaction π + p → K + K S 0 p ( K S 0 → π + π − ) at an incident π + laboratory momentum of 12.7 GeV/ c . The events are distributed over a range of four-momentum transfer squared 0.01 ⩽ − t ⩽ 0.60 (GeV/ c ) 2 and K + K S 0 mass 1.11 ⩽ m K + K S 0 ⩽ 1.51 GeV . A Breit-Wigner fit to the mass spectrum yields a mass for the A 2 + , m A 2 + = 1.324 ± 0.005 GeV, and a width Γ 0 = 0.110 ± 0.018 GeV. We find a cross section σ ( π + p → A 2 + p) = 1.71 ± 0.30 μb referring to the above-mentioned mass and t range and A 2 + → K + K S O with K S 0 → π + π − . The spin-space density matrix in the Gottfried-Jackson frame is practically saturated by ϱ 11 ⋍ ϱ 1−1 = 1 2 suggesting natural parity exchanges only. There is a forward dip in the angular distribution consistent with dominance of s -channel net helicity flip amplitudes and ϱ and f Regge exchanges suffice to describe adequately our differential cross sections.

5 data tables

SUBTRACTED BACKGROUND IS PHASE SPACE. FITTED D(SIG)/DT SLOPE IS 9.5 +- 0.9 GEV**-2.

SUBTRACTED BACKGROUND IS AN S-WAVE WITH SLOPE OF 8 GEV**-2. FITTED D(SIG)/DT SLOPE IS 6.9 +- 0.6 GEV**-2.

FROM D(SIG)/DT. ERROR INCLUDES 15 PCT SCALE ERROR ADDED QUADRATICALLY.

More…