Date

Transverse spin transfer to $\Lambda$ and $\bar{\Lambda}$ hyperons in polarized proton-proton collisions at $\sqrt{s}=200\,\mathrm{GeV}$

The STAR collaboration Adam, J. ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 98 (2018) 091103, 2018.
Inspire Record 1691271 DOI 10.17182/hepdata.105628

The transverse spin transfer from polarized protons to $\Lambda$ and $\bar{\Lambda}$ hyperons is expected to provide sensitivity to the transversity distribution of the nucleon and to the transversely polarized fragmentation functions. We report the first measurement of the transverse spin transfer to $\Lambda$ and $\bar{\Lambda}$ along the polarization direction of the fragmenting quark, $D_\mathrm{TT}$, in transversely polarized proton-proton collisions at $\sqrt{s}=200\,\mathrm{GeV}$ with the STAR detector at RHIC. The data correspond to an integrated luminosity of $18\,\mathrm{pb}^{-1}$ and cover the pseudorapidity range $\left|\eta\right| < 1.2$ and transverse momenta $p_{\mathrm{T}}$ up to $8\,\mathrm{GeV}/c$. The dependence on $p_\mathrm{T}$ and $\eta$ are presented. The $D_\mathrm{TT}$ results are found to be comparable with a model prediction, and are also consistent with zero within uncertainties.

7 data tables

'Transverse spin transfer of $\Lambda$ in transversely polarized proton-proton collisions at 200 GeV.'

'Transverse spin transfer of $\bar{\Lambda}$ in transversely polarized proton-proton collisions at 200 GeV.'

'spin asymmetry $\delta_{TT}$ for the control sample of $K_S^0$ meson.'

More…

Improved measurement of the longitudinal spin transfer to $\Lambda$ and $\bar \Lambda$ hyperons in polarized proton-proton collisions at $\sqrt s$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 98 (2018) 112009, 2018.
Inspire Record 1691152 DOI 10.17182/hepdata.105910

The longitudinal spin transfer $D_{LL}$ to $\Lambda$ and $\bar{\Lambda}$ hyperons produced in high-energy polarized proton--proton collisions is expected to be sensitive to the helicity distribution functions of strange quarks and anti-quarks of the proton, and to longitudinally polarized fragmentation functions. We report an improved measurement of $D_{LL}$ from data obtained at a center-of-mass energy of $\sqrt{s}$ = 200 GeV with the STAR detector at RHIC. The data have an approximately twelve times larger figure-of-merit than prior results and cover $|\eta|<$ 1.2 in pseudo-rapidity with transverse momenta $p_T$ up to 6 GeV/c. In the forward scattering hemisphere at largest $p_T$, the longitudinal spin transfer is found to be $D_{LL}$ = -0.036 $\pm$ 0.048 (stat) $\pm$ 0.013(sys) for $\Lambda$ hyperons and $D_{LL}$ = 0.032 $\pm$ 0.043\,(stat) $\pm$ 0.013\,(sys) for $\bar{\Lambda}$ anti-hyperons. The dependences on $\eta$ and $p_T$ are presented and compared with model evaluations.

7 data tables

The invariant mass distribution for $\Lambda$ and $\bar{\Lambda}$ candidates with 3 < p_T < $ 4 GeV/c in this analysis

The raw spin transfer $D _{LL}^{raw}$ versus cos$\theta^*$ for a) $\Lambda$ and b) $\bar{\Lambda}$ hyperons and c) the spin asymmetry $\delta_{LL}$ for the control sample of $K_S^0$ mesons versus cos$\theta^*$ for $3<p_T<4$ GeV/c for JP1 triggered sample.

The raw spin transfer $D _{LL}^{raw}$ versus cos$\theta^*$ for a) $\Lambda$ and b) $\bar{\Lambda}$ hyperons and c) the spin asymmetry $\delta_{LL}$ for the control sample of $K_S^0$ mesons versus cos$\theta^*$ for $3<p_T<4$ GeV/c for JP1 triggered sample. Results updated with $\alpha_{\Lambda (\bar{\Lambda})} = 0.732$.

More…

Version 3
Measurement of antiproton production in ${\rm p He}$ collisions at $\sqrt{s_{NN}}=110$ GeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
Phys.Rev.Lett. 121 (2018) 222001, 2018.
Inspire Record 1688924 DOI 10.17182/hepdata.84584

The cross-section for prompt antiproton production in collisions of protons with an energy of $6.5$ TeV incident on helium nuclei at rest is measured with the LHCb experiment from a data set corresponding to an integrated luminosity of $0.5\,nb^{-1}$. The target is provided by injecting helium gas into the LHC beam line at the LHCb interaction point. The reported results, covering antiproton momenta between $12$ and $110\,\mathrm{GeV/}c$, represent the first direct determination of the antiproton production cross-section in ${\rm p He}$ collisions, and impact the interpretation of recent results on antiproton cosmic rays from space-borne experiments.

2 data tables

Double-differential cross-section in antiproton momentum and transverse momentum for antiproton production in collisions of 6.5 TeV protons on He nuclei at rest. The antiproton momentum is defined in the laboratory frame. Results are averaged over the given kinematic range of each bin. The uncertainty is split into an uncertainty delta_uncorr, uncorrelated among the kinematic bins, and an uncertainty delta_corr, fully correlated among the kinematic bins. For both uncertainties, the systematic uncertainty, dominant for most bins, and the statistical uncertainty, are added in quadrature. The average value within each bin is also reported for the antiproton momentum, the transverse momentum. These average values are obtained from simulation (based on EPOS LHC), to avoid biases from reconstruction effects and given the good agreement with data observed for the simulated kinematic spectra. Projections of Table1 distribution in antiproton $p_T$ bins.

The average value of antiproton x-Feynman $x_F=2 p_{Z}^{*}/\sqrt{s}$ in bins of antiproton momentum and transverse momentum in collisions of 6.5 TeV protons on He nuclei at rest, where $p_{Z}^{*}$ is the longitudinal antiproton momentum in the center-of-mass system and $\sqrt{s}$ the nucleon-nucleon center-of-mass energy. In each bin the average value is reported for the antiproton momentum and transverse momentum. These average values are obtained from simulation (based on EPOS LHC), to avoid biases from reconstruction effects and given the good agreement with data observed for the simulated kinematic spectra. Projections of Table 3 distribution in antiproton $p_T$ bins.


The Proton-$\Omega$ correlation function in Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 790 (2019) 490-497, 2019.
Inspire Record 1685527 DOI 10.17182/hepdata.98861

We present the first measurement of the proton-$\Omega$ correlation function in heavy-ion collisions for central (0-40$\%$) and peripheral (40-80$\%$) Au+Au collisions at \sqrtsNN\,\,=200 GeV by the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). Predictions for the ratio of peripheral collisions to central collisions for the proton-$\Omega$ correlation function are sensitive to the presence of a nucleon-$\Omega$ bound state. These predictions are based on the proton-$\Omega$ interaction extracted from (2+1)-flavor lattice QCD calculations at the physical point. The measured ratio of proton-$\Omega$ correlation function from peripheral (small system) to central (large system) collisions is less than unity for relative momentum smaller than 40 MeV/c. Comparison of our measured correlation ratio with the theoretical calculation slightly favors a proton-$\Omega$ bound system with a binding energy of $\sim$ 27~MeV.

2 data tables

Measured correlation function (C($k^{*}$)) for proton-$\Omega$ and antiproton-$\bar{\Omega}$ (P$\Omega$ + $\bar{P}$$\bar{\Omega}$) for (0-40)$\%$ and (40-80$\%$) Au+Au collisons at $\sqrt{s}_{NN}$ = 200 GeV. The errors are statistical and systematic.

Ratio of small system (40-80$\%$) to large system (0-40$\%$) for proton-$\Omega$ and antiproton-$\bar{\Omega}$ (P$\Omega$ + $\bar{P}$$\Omega$). The errors are statistical and symmetric.


Low-$p_T$ $e^{+}e^{-}$ pair production in Au$+$Au collisions at $\sqrt{s_{NN}}$ = 200 GeV and U$+$U collisions at $\sqrt{s_{NN}}$ = 193 GeV at STAR

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.Lett. 121 (2018) 132301, 2018.
Inspire Record 1676541 DOI 10.17182/hepdata.84821

We report first measurements of $e^{+}e^{-}$ pair production in the mass region 0.4 $

36 data tables

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

More…

Photoproduction of {\boldmath{$\pi^{0}$}} Mesons off Protons and Neutrons in the Second and Third Nucleon Resonance Region

The A2 collaboration Dieterle, M. ; Werthmüller, D. ; Abt, S. ; et al.
Phys.Rev.C (2018) 065205-1-065205-28, 2018.
Inspire Record 1675023 DOI 10.17182/hepdata.131794

Photoproduction of mesons off quasi-free nucleons bound in the deuteron allows to study the electromagnetic excitation spectrum of the neutron and the isospin structure of the excitation of nucleon resonances. The database for such reactions is much more sparse than for free proton targets. Single $\pi^0$ photoproduction off quasi-free nucleons from the deuteron was experimentally studied. Nuclear effects were investigated by a comparison of the results for free protons and quasi-free protons and used as a correction for the quasi-free neutron data. The experiment was performed at the tagged photon beam of the Mainz MAMI accelerator for photon energies between 0.45~GeV and 1.4~GeV, using an almost $4\pi$ electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. A complete kinematic reconstruction of the final state removed the effects of Fermi motion. Reaction model predictions and PWA for $\gamma n\rightarrow n\pi^{0}$, based on fits to data for the other isospin channels, disagreed between themselves and no model provided a good description of the new data. The results demonstrate clearly the importance of a measurement of the fully neutral final state for the isospin decomposition of the cross section. Model refits, for example from the Bonn-Gatchina analysis, show that the new and the previous data for the other three isospin channels can be simultaneously described when the contributions of several partial waves are modified. The results are also relevant for the suppression of the higher resonance bumps in total photoabsorption on nuclei, which are not well understood.

19 data tables

Excitation function at cos(Theta_pi0)cm = -0.95

Excitation function at cos(Theta_pi0)cm = -0.85

Excitation function at cos(Theta_pi0)cm = -0.75

More…

Measurement of $D_s^{\pm}$ production asymmetry in $pp$ collisions at $\sqrt{s} =7$ and 8 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 08 (2018) 008, 2018.
Inspire Record 1674916 DOI 10.17182/hepdata.82715

The inclusive $D_s^{\pm}$ production asymmetry is measured in $pp$ collisions collected by the LHCb experiment at centre-of-mass energies of $\sqrt{s} =7$ and 8 TeV. Promptly produced $D_s^{\pm}$ mesons are used, which decay as $D_s^{\pm}\to\phi\pi^{\pm}$, with $\phi\to K^+K^-$. The measurement is performed in bins of transverse momentum, $p_{\rm T}$, and rapidity, $y$, covering the range $2.5

6 data tables

Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the combined $\sqrt{s} =7$ and 8 TeV data sets. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).

Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the $\sqrt{s} =7$ TeV data set. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).

Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the $\sqrt{s} =8$ TeV data set. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).

More…

Longitudinal Double-Spin Asymmetries for Dijet Production at Intermediate Pseudorapidity in Polarized $pp$ Collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 98 (2018) 032011, 2018.
Inspire Record 1674714 DOI 10.17182/hepdata.130944

We present the first measurements of the longitudinal double-spin asymmetry $A_{LL}$ for dijets with at least one jet reconstructed within the pseudorapidity range $0.8 < \eta < 1.8$. The dijets were measured in polarized $pp$ collisions at a center-of-mass energy $\sqrt{s}$ = 200 GeV. Values for $A_{LL}$ are determined for several distinct event topologies, defined by the jet pseudorapidities, and span a range of parton momentum fraction $x$ down to $x \sim$ 0.01. The measured asymmetries are found to be consistent with the predictions of global analyses that incorporate the results of previous RHIC measurements. They will provide new constraints on $\Delta g(x)$ in this poorly constrained region when included in future global analyses.

17 data tables

Data/simulation comparisons of the relative jet yields as functions of Barrel+endcap jet pseudorapidity

Data/simulation comparisons of the relative jet yields as functions of Barrel+endcap jet azimuthal angle

Data/simulation comparisons of the relative jet yields as functions of jet transverse momentum for the barrel

More…

Longitudinal Double-Spin Asymmetries for $\pi^{0}$s in the Forward Direction for 510 GeV Polarized $pp$ Collisions

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 98 (2018) 032013, 2018.
Inspire Record 1674826 DOI 10.17182/hepdata.103058

The STAR Collaboration reports measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for neutral pions produced at forward directions in polarized proton-proton collisions, at a center-of-mass energy of $510$ GeV. Results are given for transverse momenta in the range $2

2 data tables

Longitudinal Double-Spin Asymmetry, $A_{LL}$ vs $\pi^0$ transverse momentum in polarized pp collisions at $\sqrt{s}$ = 510 GeV. $\pm 6.7\%$ polarization scale uncertainty not shown.

Longitudinal Double-Spin Asymmetry, $A_{LL}$ vs $\pi^0$ transverse momentum in polarized pp collisions at $\sqrt{s}$ = 510 GeV. $\pm 6.7\%$ polarization scale uncertainty not shown.


Version 2
Global polarization of $\Lambda$ hyperons in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adams, Joseph ; Agakishiev, Geydar ; et al.
Phys.Rev.C 98 (2018) 014910, 2018.
Inspire Record 1672785 DOI 10.17182/hepdata.99054

Global polarization of $\Lambda$ hyperons has been measured to be of the order of a few tenths of a percent in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV, with no significant difference between $\Lambda$ and $\bar{\Lambda}$. These new results reveal the collision energy dependence of the global polarization together with the results previously observed at $\sqrt{s_{_{NN}}}$ = 7.7 -- 62.4 GeV and indicate noticeable vorticity of the medium created in non-central heavy-ion collisions at the highest RHIC collision energy. The signal is in rough quantitative agreement with the theoretical predictions from a hydrodynamic model and from the AMPT (A Multi-Phase Transport) model. The polarization is larger in more peripheral collisions, and depends weakly on the hyperon's transverse momentum and pseudorapidity $\eta^H$ within $|\eta^H|<1$. An indication of the polarization dependence on the event-by-event charge asymmetry is observed at the $2\sigma$ level, suggesting a possible contribution to the polarization from the axial current induced by the initial magnetic field.

10 data tables

Global polarization of $\Lambda$ and $\bar{\Lambda}$ as a function of the collision energy $\sqrt{s_{_{NN}}}$ for 20-50% centrality Au+Au collisions. Thin lines show calculations from a 3+1D cascade + viscous hydrodynamic model (UrQMD+vHLLE) and bold lines show the AMPT model calculations. In the case of each model, primary $\Lambda$ with and without the feed-down effect are indicated by dashed and solid lines, respectively. Open boxes and vertical lines show systematic and statistical uncertainties, respectively. Note that the data points at 200 GeV and for $\bar{\Lambda}$ are slightly horizontally shifted for visibility.

$\Lambda$ ($\bar\Lambda$) polarization as a function of the collision centrality in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Open boxes and vertical lines show systematic and statistical uncertainties. The data points for Λ are slightly shifted for visibility.

Polarization of $\Lambda$ and $\bar\Lambda$ as a function of $p_{T}$ for the $20\%–60\%$ centrality bin in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Open boxes and vertical lines show systematic and statistical uncertainties, respectively. Hydrodynamic model calculations for Λ with two different initial conditions (IC) are compared. Note that the data points for Λ are slightly shifted for visibility.

More…