Analyzing powers for πp elastic scattering at bombarding energies below the Δ(1232) resonance were measured at TRIUMF using the CHAOS spectrometer and a polarized spin target. This work presents π− data at six incident energies of 57, 67, 87, 98, 117, and 139 MeV, and a single π+ data set at 139 MeV. The higher energy measurements cover an angular range of 72°<~θc.m.<~180° while the lower energies were limited to 101°<~θc.m.<~180°. There is a high degree of consistency between this work and the predictions of the VPI/GWU group’s SM95 partial wave analysis.
Analysing power measurements for a 139 GeV PI+ beam (standard track).
Analysing power measurements for a 139 GeV PI- beam (standard track).
Analysing power measurements for a 117 GeV PI- beam (standard track).
Angular distributions of the analyzing powers for π+p→ and π−p→ elastic scattering have been measured in a single-scattering experiment employing a polarized proton target. Measurements were obtained for pion energies of 98, 139, 166, 215, and 263 MeV. The addition of these data to the existing πp database significantly reduces the uncertainties in all S and P phase shifts for πp reactions over the delta resonance.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 98 MeV.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 139 MeV.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 166 MeV.
Analyzing powers for π−p elastic scattering have been measured at TRIUMF using the CHAOS spectrometer and a spin-polarized target. These data were collected at a bombarding energy of Tπ=279MeV and cover an angular range of 53<~θc.m.π<~180°. There is good agreement between these data and the latest partial wave analysis from the VPI/GWU group.
Analysing power measurement.
Measurements at 18 beam kinetic energies between 1975 and 2795 MeV and at 795 MeV are reported for the pp elastic-scattering single spin parameter Aooon=Aoono=AN=P. The c.m. angular range is typically 60–100°. These results are compared to previous data from Saturne II and other accelerators. A search for energy-dependent structure at fixed c.m. angles is performed, but no rapid changes are observed.
Measured values of the P P analysing power at kinetic energy 0.795 GeV. Therelative and additive systematic errors are +- 0.018 and 0.0007.
Measured values of the P P analysing power at kinetic energy 1.975 GeV. Therelative and additive systematic errors are +- 0.045 and 0.002.
Measured values of the P P analysing power at kinetic energy 2.035 GeV fromrun I. The relative and additive systematic errors are +- 0.044 and 0.002.
Experimental results are presented for the pp elastic-scattering single spin observable Aoono=Aooon=AN=P, or the analyzing power, at 19 beam kinetic energies between 1795 and 2235 MeV. The typical c.m. angular range is 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters.
Measurement values of the P P analysing power at kinetic energy 1.795 GeV. The relative and additive systematic errors are +- 0.106 and 0.003.
Measurement values of the P P analysing power at kinetic energy 1.845 GeV. The relative and additive systematic errors are +- 0.068 and 0.001.
Measurement values of the P P analysing power at kinetic energy 1.935 GeV. The relative and additive systematic errors are +- 0.091 and 0.003.
The P parameter for π + p scattering at 236.3 MeV has been measured between 50° and 146° c.m. with very low background using a butanol polarized proton target. The resulting D phases are in fair agreement with dispersion relation values.
No description provided.
A precise measurement of the analyzing power $A_N$ in proton-proton elastic scattering in the region of 4-momentum transfer squared $0.001 < |t| < 0.032 ({\rm GeV}/c)^2$ has been performed using a polarized atomic hydrogen gas jet target and the 100 GeV/$c$ RHIC proton beam. The interference of the electromagnetic spin-flip amplitude with a hadronic spin-nonflip amplitude is predicted to generate a significant $A_N$ of 4--5%, peaking at $-t \simeq 0.003 ({\rm GeV}/c)^2$. This kinematic region is known as the Coulomb Nuclear Interference region. A possible hadronic spin-flip amplitude modifies this otherwise calculable prediction. Our data are well described by the CNI prediction with the electromagnetic spin-flip alone and do not support the presence of a large hadronic spin-flip amplitude.
Analysing power as a function of momentum transfer T. The first DSYS error is the systematic error, the second is the normalization error on the target polarization.
The absolute normalisation of the polarisation in pp elastic scattering at 24 degrees lab has been determined by means of a double-scattering experiment to an accuracy of +or-1.5% at five energies between 200 and 520 MeV.
No description provided.
The polarization parameter has been measured for π − p elastic scattering in the backward region at 3.5 GeV/ c incident momentum. The experimental set-up consisted of a polarized target in a spectrometer magnet, hodoscopes and wire spark chambers. Data are presented for the range −0.95< u ⩽−0.19 GeV 2 . An isospin analysis has been carried out to separate the I u = 1 2 and I u = 3 2 contributions.
BACKWARD SCATTERING.
Polarization in π − p elastic scattering, with emphasis over the backward region, has been measured at 2.93 and 3.25 GeV/ c . We observe large changes in polarization compared with existing data above and below these energies. Our data may be useful in determining the properties of resonances and in understanding baryon exchanges.
THESE DATA, TOGETHER WITH THE FORWARD SCATTERING POLARIZATION MEASUREMENTS, ARE TABULATED IN THE RECORD OF P. AUER ET AL., PRL 37, 83 (1976).