A bubble chamber study of proton-proton interactions at 4 GeV/c Part I—Elastic scattering, single-pion and deuteron production

Ooletti, S. ; Kidd, J. ; Mandelli, L. ; et al.
Nuovo Cim.A 49 (1967) 479-498, 1967.
Inspire Record 1185329 DOI 10.17182/hepdata.981

Elastic scattering, single-pion and deuteron production have been investigated. The cross-section for elastic scattering is σelastic = (13.5±0.3) mb. The angular distribution has been fitted to dσ/d|t|=(dσ/d|t|)0 e −bt in the region of low values oft. The best fit givesb=(6.7±0.5) (GeV/c)−2 and (dσ/d|t|)0=(91±5) mb(GeV/c)−2. The cross-sections for ppπ0, pnπ+ reactions are respectively (2.6±0.3) mb and (9.7±0.4) mb. These reactions are dominated by the (3/2, 3/2) nucleonpion isobar production and by forward backward collimation of the nucleons. The production rates for the isobars ++1238 , +1238 , +1500 have been estimated, taking into account the experimental peripheral behaviour of the interaction. In the pnπ+ reaction they are (50±2)%; (10±3)%; (4±3)%. In the ppπ+ reaction the production of ++1238 is estimated to be (45±10)%. The dπ+ and dπ+π+π- reaction cross-sections are respectively (0.03±0.01) mb, and (0.04±0.01) mb.

2 data tables match query

No description provided.

No description provided.


Proton-proton small angle scattering and total cross section of 10.0 GeV⧸c

Bellettini, G. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Lett. 19 (1966) 705-705, 1966.
Inspire Record 1389783 DOI 10.17182/hepdata.782

None

1 data table match query

No description provided.


Analysis of two-prong events in proton proton interactions at 6.6 gev/c

Colton, E. ; Ming, Ma.Z. ; Smith, G.A. ; et al.
Phys.Rev.D 7 (1972) 3267-3295, 1972.
Inspire Record 82060 DOI 10.17182/hepdata.22134

A detailed analysis is presented of the reactions pp→pp,pp→ppπ0 and pp→pπ+n. The production cross sections are found to be 11.47 ± 0.33 mb, 2.54 ± 0.16 mb, and 5.73 ± 0.35 mb, respectively. The t dependence of elastic scattering can be described by the form e7.9t over the range 0.05<−t<0.50 GeV2. The single-particle distributions for the single-pion production processes are presented. Further detailed analyses are presented which demonstrate that pion-exchange phenomenology, both elementary and Reggeized, can account for the gross features of the peripheral pp→pπ+n data for M(pπ+)<2.4 GeV. Isospin-12 isobars are produced by some other processes in the channel pp→pN*+, especially when the invariant mass of the pion with the unrelated proton is large. We discuss the properties of these isobars.

3 data tables match query

No description provided.

FITTED OVER 0.05 < -T < 0.5 GEV**2.

No description provided.


Proton-Proton Interactions at 5.5 GeV/c

Alexander, G. ; Benary, O. ; Czapek, G. ; et al.
Phys.Rev. 154 (1967) 1284-1304, 1967.
Inspire Record 52243 DOI 10.17182/hepdata.55119

This report is based on about 10 500 pp collision events produced in the 81-cm Saclay hydrogen bubble chamber at CERN. Cross-section values for the different identified final states and resonances are given. The isobars N*1238, N*1420, N*1518, N*1688, N*1920, and N*2360 were identified and their production cross-section values were found via a best-fit analysis of different invariant-mass histograms. About 70% of the isobars are connected with the quasi-two-body reactions pp→N*N and pp→N*N*. The reaction pp→nN*1238(pπ+) with a cross section of 3.25±0.16 mb was analyzed in terms of a peripheral absorption model, which was found to be in good agreement with the data. Various decay modes of the N*1518 and N*1688 isobars were observed and their branching ratios determined. The branching ratio of nπ+ to pπ+π− was found to be 0.77±0.45 for N*1518 and 0.67±0.40 for N*1688. The branching ratio of N*1238(pπ+)π− to pπ+π− of N*1688 was estimated to be 0.74±0.14. Pion production turned out to be mainly due to decay of isobars. Production of meson resonances turned out to be less important; the reaction pp→ppω0→ppπ+π−π0 was identified with a cross-section value of 0.11±0.02 mb. Finally, the production of neutral strange particles with a cross section of 0.45±0.04 mb is descussed. Strong formation of Y*1385 is observed.

3 data tables match query

No description provided.

No description provided.

No description provided.


Diffraction-like structure in elastic proton-proton scattering at large momentum transfers

Allaby, J.V. ; Diddens, A.N. ; Klovning, A. ; et al.
Phys.Lett.B 27 (1968) 49-53, 1968.
Inspire Record 1392696 DOI 10.17182/hepdata.29184

Measurements of wide angle elastic p-p scattering between 7 and 12 GeV/c are reported. Structure found in the angular distributions is suggestive of diffraction.

10 data tables match query
More…

Wide-angle proton-proton elastic scattering from 1.3 to 3.0 gev/c

Williams, D.T. ; Bloodworth, I.J. ; Eisenhandler, E. ; et al.
Nuovo Cim.A 8 (1972) 447-469, 1972.
Inspire Record 78276 DOI 10.17182/hepdata.37468

Differential cross-sections for proton-proton elastic scattering have been measured covering the angular range from 50° to 90° c.m. at twelve incident momenta from 1.3 to 3.0 GeV/c. The angular distributions are quite smooth, but there is evidence of structure in the energy dependence of fixed-angle cross-sections at |t| ∼ 1 (GeV)2.

24 data tables match query

No description provided.

No description provided.

No description provided.

More…

Systematic study of pi+- p, k+- p, p p, and anti-p p forward elastic scattering from 3 to 6 gev/c

Ambats, I. ; Ayres, D.S. ; Diebold, R. ; et al.
Phys.Rev.D 9 (1974) 1179-1209, 1974.
Inspire Record 92992 DOI 10.17182/hepdata.3409

Measurements of π±p, K±p, pp, and p¯p elastic scattering are presented for incident momenta of 3, 3.65, 5, and 6 GeVc and momentum transfers typically 0.03 to 1.8 GeV2. The angle and momentum of the scattered particle were measured with the Argonne Effective Mass Spectrometer for 300 000 events, yielding 930 cross-section values with an uncertainty in absolute normalization of ±4%. Only the K+ and proton data show any significant change in slope of the forward diffraction peak with incident momentum. The particle-antiparticle crossover positions are consistent with no energy dependence, average values being 0.14 ± 0.03, 0.190 ± 0.006, and 0.162 ± 0.004 GeV2 for π' s, K' s, and protons, respectively; these errors reflect both statistics and the ±1.5% uncertainty in particle-antiparticle relative normalization. Differences between particle and antiparticle cross sections isolate interference terms between amplitudes of opposite C parity in the t channel; these differences indicate that the imaginary part of the odd-C nonflip-helicity amplitude has a J0(r(−t)12) structure for −t<0.8 GeV2, as predicted by strong absorption models. The cross-section differences for K± and proton-antiproton are in qualitative agreement with the predictions of ω universality, the agreement improving with increasing energy. The corresponding quark-model predictions relating the π± and K± differences failed by more than a factor of 2. We have combined our π± cross sections with other data to better determine the πN amplitudes in a model-independent way; results of this analysis are presented.

17 data tables match query

No description provided.

No description provided.

No description provided.

More…