Energy dependence of pion and kaon production in central Pb + Pb collisions.

The NA49 collaboration Afanasiev, S.V. ; Anticic, T. ; Barna, D. ; et al.
Phys.Rev.C 66 (2002) 054902, 2002.
Inspire Record 586383 DOI 10.17182/hepdata.31729

Measurements of charged pion and kaon production in central Pb+Pb collisions at 40, 80 and 158 AGeV are presented. These are compared with data at lower and higher energies as well as with results from p+p interactions. The mean pion multiplicity per wounded nucleon increases approximately linearly with s_NN^1/4 with a change of slope starting in the region 15-40 AGeV. The change from pion suppression with respect to p+p interactions, as observed at low collision energies, to pion enhancement at high energies occurs at about 40 AGeV. A non-monotonic energy dependence of the ratio of K^+ to pi^+ yields is observed, with a maximum close to 40 AGeV and an indication of a nearly constant value at higher energies.The measured dependences may be related to an increase of the entropy production and a decrease of the strangeness to entropy ratio in central Pb+Pb collisions in the low SPS energy range, which is consistent with the hypothesis that a transient state of deconfined matter is created above these energies. Other interpretations of the data are also discussed.

1 data table match query

K- rapidity spectra from PB PB collisions at incident beam momentum 158 GeV/nucleon.


Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon

The NA35 collaboration Alber, T. ; Appelshauser, H. ; Bachler, J. ; et al.
Eur.Phys.J.C 2 (1998) 643-659, 1998.
Inspire Record 450611 DOI 10.17182/hepdata.34289

The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse momentum spectra of negatively charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and central nucleus-nucleus collisions. The mean transverse momentum is almost constant in the vicinity of midrapidity and shows little variation with the target and projectile masses. The average number of produced negatively charged hadrons per participant baryon increases slightly from p+p, p+A to central S+S,Ag collisions.

1 data table match query

Rapidity distributions of net hyperons (Lambda-Lambdabar) for central S+S (0.5 < y < 3.0) collisions at 200 GeV/nucleon.


RESULTS ON LAMBDA(c)+, D(s)+, D0 AND D+ PRODUCTION PROPERTIES IN 230-GeV/c pi- Cu INTERACTIONS FROM THE NA32 EXPERIMENT

The ACCMOR collaboration Barlag, S. ; Becker, H. ; Bohringer, T. ; et al.
CERN-EP/88-104, 1988.
Inspire Record 264995 DOI 10.17182/hepdata.12879

None

1 data table match query

CORRECTED FOR ACCEPTANCE.


Proton distributions in the target fragmentation region in proton - nucleus and nucleus-nucleus collisions at high-energies

The HELIOS collaboration Åkesson, T. ; Almehed, S. ; Angelis, A.L. S. ; et al.
Z.Phys.C 53 (1992) 183-192, 1992.
Inspire Record 317494 DOI 10.17182/hepdata.14773

We present measurements of the rapidity and transverse-momentum distributions of the protons emitted in S+W, O+W, andp+W reactions at 200 GeV/A around the target rapidity (y=1). The rapidity density rises linearly with the transverse energy for all three systems, but the slope forp+W is much steeper than for O+W and S+W. The rapidity density forp+W is much higher than predicted by summing single nucleonnucleon collisions without any nuclear effects, indicating substantial rescattering of the produced particles. The predictions of the VENUS 3 model, including rescattering, show reasonable agreement with the data for all three systems. We do not have evidence for a strong collective flow of the outgoing particles.

1 data table match query

No description provided.