We present measurements of the rapidity and transverse-momentum distributions of the protons emitted in S+W, O+W, andp+W reactions at 200 GeV/A around the target rapidity (y=1). The rapidity density rises linearly with the transverse energy for all three systems, but the slope forp+W is much steeper than for O+W and S+W. The rapidity density forp+W is much higher than predicted by summing single nucleonnucleon collisions without any nuclear effects, indicating substantial rescattering of the produced particles. The predictions of the VENUS 3 model, including rescattering, show reasonable agreement with the data for all three systems. We do not have evidence for a strong collective flow of the outgoing particles.
No description provided.
No description provided.
No description provided.
The production ofπ0 andη mesons has been studied in the reactions20Ne +Al at 350 MeV/u and40Ar + Ca at 1.0 GeV/u. Rapidity distributions and transverse momentum spectra have been measured and are compared to thermal distributions.
THE SPECTRUM (1/PT)*D(SIG)/D(PT) HAS BEEN FITTED BY A THERMAL DISTRIBUTION SQRT(MT)*EXP(-SLOPE*MT).
THE SPECTRUM (1/PT)*D(SIG)/D(PT) HAS BEEN FITTED BY A THERMAL DISTRIBUTION SQRT(MT)*EXP(-SLOPE*MT).
Particle correlations of the central collision events of 32 S + Pb at 200 GeV/AMU have been studied by utilizing a Magnetic-Interferometric-Emulsion-Chamber (MAGIC) detector. Particle angles, momentum, and charge-signs are measured for all produced charged tracks for each event. Two-particle correlation functions, C 2 = dN (¦ p 1 − p 2 ¦= q )/ dp 1 dp 2 , for (++), (−−) and (+-) particles are examined. A source radius around 4 – 6 fm is observed for overall identical particle correlations, while unexpected short-range correlations of unlike-sign pairs are observed in the high rapidity region. An analysis of unlike-sign pairs in terms of resonance decays indicated that a large amount (40% relative to pions) of η or ω mesons (decaying into 3 π), or of scalar iso-scalar σ mesons (decaying into 2π) would be required to explain some of the data. Multi-particle charge-sign clusters are recognized; however, their “run-test” and “conjugate-test” show small deviations from statistical fluctuations.
No description provided.
We have measured the inclusive cross-section as a function of missing energy, due to the production of neutrinos or new weakly interacting neutral particles in 450 GeV/c proton-nucleus collisions, using calorimetric measurements of visible event energy. Upper limits are placed on the production of new particles as a function of their energy. These upper limits are typically an order
Differential single diffraction cross section.
Differential single diffraction cross section.
Differential single diffraction cross section.
The PS185 experiment at the CERN Low Energy Antiproton Ring (LEAR) has studied the reaction p ̄ p → \ ̄ gLΛ at several momenta. In this paper results from two runs with high statistics at 1.546 GeV/ c and 1.695 GeV/ c are described. Based on 4063 and 11362 analysed events, respectively, differential and integrated cross sections, polarizations and spin correlations are presented. The singlet fraction, extracted from the spin correlations, is consistent with zero at both momenta, showing that the \ ̄ gLΛ pairs are produced in a pure triplet state. A comparison of the decay asymmetry parameters of Λ and \ ̄ gL reduces the upper limits for the violation of the CP invariance for this system.
No description provided.
THE BESTFIT WITH LMAX=3, HI2=1.204.
THE BESTFIT WITH LMAX=6, HI2=0.547.
Energy spectra of protons, deuterons and tritons from the annihilation of antiprotons stopped in 12 C, 40 Ca, 63 Cu, 92,98 Mo and 238 U have been measured with a Ge-detector telescope. Parameters related to the shape of the spectra were calculated and their dependence on target and ejectile mass number was determined. Yields per p̄ of directly emitted protons, deuterons and tritons and of evaporated protons were estimated.
THE PROTON SPECTRA WERE FITTED WITH THE EXPRESSION N(E)=N1*EXP( -SLOPE(Q=1)*E)+N2*EXP(-SLOPE(Q=2)*E).
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
This work represents the results of an experimental investigation of the electromagnetic dissociation of 200 GeV/nucleon 16 O and 32 S ions in nuclear emulsions. Exclusive channels involving charged fragments have been studied as a function of the energy released, and, assuming a Weizsäcker-Williams spectrum of virtual photons, there is a good agreement with results for the (γ, p) processes obtained with real photons. However, the rates found for other processes are larger, in particular for the (γ, α) on both nuclei. The values of the total integrated absorption cross sections are generally larger than those obtained from real photon experiments but the extent of the discrepancy depends strongly upon which photon results are used in the comparison.
ELECTROMAGNETIC DISSOCIATION IN NUCLEAR EMULSION.
ELECTROMAGNETIC DISSOCIATION IN NUCLEAR EMULSION.
NUCLEUS IS THE EMULSION.
Data on the reactions (K+/π+)p→(K+/π+)pπ+π- and (K+/π+)p→(K+/π+)p2π+2π-, obtained with the European Hybrid Spectrometer, are presented and compared with data at lower energies. The contribution of beam and target diffractive dissociation and double Pomeron exchange, and porperties of these reactions are discussed.
No description provided.
No description provided.
No description provided.
Calorimeter measurements of dσ de t for pp, dd, pα , and αα collisions at S nn =31.5 GeV are presented for the pseudorapidity interval | η cm | ⩽ 0.7, extending over eight decades to E t ⩾ 30 GeV. The data are compared with models that predict nuclear cross sections directly from pp data, under the assumption of independent nucleon scatters.
The distributions are fitted D(SIG)/D(ET)=CONST*ET**POWER*EXP(-SLOPE*ET).
None
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).