The real part of the forward amplitude for Compton scattering on protons was measured through the interference between the Compton and Bethe-Heithler amplitudes by detecting the zero-degree electron pairs asymmetrically. The measurement was made at an average photon energy of 〈k〉=2.2 GeV, and an average momentum transfer to the recoil proton 〈t〉=−0.027 (GeV/c)2. The result confirms the prediction of the Kramers-Kronig relation.
No description provided.
Measurements are presented of the recoil-proton polarization for π0 photoproduction angles near 64° in the c.m. system. The steep angular dependence observed by others at lower energies persists to at least 1500 MeV, and the polarization crosses through zero near 63° over the entire 900-1600-MeV energy interval. Summary fits are made to available recoil-proton polarization data, 950-1250 MeV, and are found to require terms of order cos3θ, but no higher.
Axis error includes +- 0.0/0.0 contribution (?////).
Elastic electron proton scattering has been used to check the validity of the dipole fit of the proton form factors at momentum transfer between 0.05 and 0.30 (GeV/ c ) 2 . The general behaviour of the cross sections is in agreement with previous measurements and is close to the dipole predictions but there is the suggestion of some small amplitude deviations. It is speculated that these deviations may be related to similar effects in the proton formfactor derived from the ISR pp elastic scattering data via a Chou-Yang model.
D(SIG(N=DIPOLE))/D(OMEGA) is cross-section derived in the assumption that both the magnetic and electric form - factors of the proton can be expressed by the dipole formula G(q**2) = 1/(1 + q**2/0.71)**2. Data are read from graph by BVP.
D(SIG(N=DIPOLE))/D(OMEGA) is cross-section derived in the assumption that both the magnetic and electric form - factors of the proton can be expressed by the dipole formula G(q**2) = 1/(1 + q**2/0.71)**2. Data are read from graph by BVP.
Results of fit of the combined data samples of Table 1 and Table 2. Data points was fitted by formula A + B*q**2 + C*sin(OMEGA*q**2 + PHI).
None
APPROXIMATELY CONSTANT MOMENTUM TRANSFER.
Inclusive photoproduction cross sections for pions, kaons and protons have been measured in the photon fragmentation region and are compared with recent electroproduction data at q 2 = 1.16 (GeV/ c ) 2 . If the cross sections are normalized to the total hadronic cross sections at q 2 = 0 and q 2 = 1.16 (GeV/ c ) 2 , respectively, we observe that more pions, about an equal number of protons, but fewer kaons are found in the photoproduction case for x ≥ 0.3.
No description provided.
No description provided.
No description provided.
Measurements of the polarization parameter of the reactions π − p → π 0 n and π − p → η n at 4.90 and 7.85 GeV/ c and for a squared four-momentum transfer − t ranging from 0.1 to 2.0 (GeV/ c ) 2 have been achieved by using a butanol polarized proton target and detecting only the two γ's from the neutral meson decay. The background due to events involving bound protons has been separately measured and subtracted out. A large positive polarization has been found for the reaction π − p → π 0 n. It is consistent with other pion-nucleon scattering data connected by isospin conservation. The polarization for the reaction π − p → η n is not significantly different from zero within the large experimental errors.
No description provided.
No description provided.
Invariant single-particle cross sections for pion and proton production in π ± p interactions at 8 and 16 GeV/ c are presented in terms of integrated distributions as functions of x , reduced rapidity ζ and p ⊥ 2 , and also in terms of double differential cross sections E d 2 σ /(d x d p ⊥ 2 ) and d ζ d p ⊥ 2 ). A comparison of π ± and π − induced reactions is made and the energy dependence is discussed. It is shown that the single-particle structure function cannot be factorized in its dependece on transverse and longitudinal momentum. For the beam-unlike pion, there is an indication for factorizability in terms of rapidity and transverse momentum in a small central region.
No description provided.
No description provided.
No description provided.
We report γp total, topological, and channel cross sections at 9.3 GeV from a bubblechamber experiment using a nearly monoenergetic photon beam.
No description provided.
Electron-proton elastic scattering cross sections have been measured at squared four-momentum transfers q 2 of 0.67, 1.00, 1.17, 1.50, 1.75, 2.33 and 3.00 (GeV/ c ) 2 and Electron scattering angles θ e between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E p and G M p were determined. The results indicate that G E p ( q 2 ) decreases faster with increasing q 2 than G M p ( q 2 ). Quasi-elastic electron-deuteron cross sections have been determined at values of q 2 = 0.39, 0.565, 0.78, 1.0 and 1.5 (GeV/ c ) 2 and scattering angles between 10° and 12°. At q 2 = 0.565 (GeV/ c 2 data have also been taken with θ e = 35° and at q 2 = 1.0 and 1.5 (GeV/ c ) 2 with θ e = 86°. Electron-proton as well as electron-neutron scattering cross sections have been deduced by the ratio method. The theoretical uncertainties of this procedure are shown to be small by comparison of the bound with the free proton cross sections. The magnetic form factor of the neutron G M n derived from the data is consistent with the scaling law. The charge form factor of the neutron is found to be small.
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
We observe substantial B-meson production in π−d interactions at 7 GeVc. The observed mass and width of the B are 1217 ± 12 MeV and 115 ± 40 MeV, respectively. We find that the B is produced largely in quasi-two-body final states, and, on the basis of the observed Δ0B production cross section, we expect a large πA 2B coupling which should be observable in other reactions.
No description provided.