Elliptic flow for $\phi$ mesons and (anti)deuterons in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 99 (2007) 052301, 2007.
Inspire Record 746499 DOI 10.17182/hepdata.141340

Differential elliptic flow (v_2) for phi mesons and (anti)deuterons (d^bar)d is measured for Au+Au collisions at sqrt(s_NN) = 200 GeV. The v_2 for phi mesons follows the trend of lighter pi^+/- and K^+/- mesons, suggesting that ordinary hadrons interacting with standard hadronic cross sections are not the primary driver for elliptic flow development. The v_2 values for (d^bar)d suggest that elliptic flow is additive for composite particles. This further validation of the universal scaling of v_2 per constituent quark for baryons and mesons suggests that partonic collectivity dominates the transverse expansion dynamics.

21 data tables

$m_{inv}$ distributions for foreground and background $K^+ K^-$ pairs for 20-60% central Au+Au collisions.

$m_{inv}$ distributions

$<cos(2(\varphi^{pair}-\Phi_2))>$ vs. $m_{inv}$.

More…

Nuclear modification factors of phi mesons in d+Au, Cu+Cu and Au+Au collisions at sqrt(S_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 83 (2011) 024909, 2011.
Inspire Record 852260 DOI 10.17182/hepdata.141454

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has performed systematic measurements of phi meson production in the K+K- decay channel at midrapidity in p+p, d+Au, Cu+Cu and Au+Au collisions at sqrt(S_NN)=200 GeV. Results are presented on the phi invariant yield and the nuclear modification factor R_AA for Au+Au and Cu+Cu, and R_dA for d+Au collisions, studied as a function of transverse momentum (1&lt;p_T&lt;7 GeV/c) and centrality. In central and mid-central Au+Au collisions, the R_AA of phi exhibits a suppression relative to expectations from binary scaled p+p results. The amount of suppression is smaller than that of the neutral pion and the eta meson in the intermediate p_T range (2--5 GeV/c); whereas at higher p_T the phi, pi^0, and eta show similar suppression. The baryon (protons and anti-protons) excess observed in central Au+Au collisions at intermediate p_T is not observed for the phi meson despite the similar mass of the proton and the phi. This suggests that the excess is linked to the number of constituent quarks rather than the hadron mass. The difference gradually disappears with decreasing centrality and for peripheral collisions the R_AA values for both particles are consistent with binary scaling. Cu+Cu collisions show the same yield and suppression as Au+Au collisions for the same number of N_part. The R_dA of phi shows no evidence for cold nuclear effects within uncertainties.

6 data tables

Invariant $p_T$ spectra of the $\phi$ meson for different centrality bins in Au+Au, Cu+Cu, $d$+Au, and $p$+$p$ collisions at $\sqrt{s_{NN}}$ = 200 GeV.

$R_{AA}$ vs. $p_T$ for $\phi$ in central Au+Au collisions, $R_{AA}$ vs. $p_T$ for $\phi$ and $\pi^0$ in 10-20% mid-central Au+Au collisions, and $R_{AA}$ vs. $p_T$ for $\phi$ and $p$+$\bar{p}$ in 60-92% and for $\pi^0$ in 80-92% peripheral Au+Au collisions. The global uncertainty of ~ 10% related to the $p$+$p$ reference normalization is not shown.

$R_{AA}$ vs. $p_T$ for $\phi$ for 30-40% centrality Au+Au and 0-10% centrality Cu+Cu collisions, and $R_{AA}$ vs. $p_T$ for $\phi$ and $\pi^0$ for 40-50% centrality Au+Au and 10-20% centrality Cu+Cu collisions. The global uncertainty of ~ 10% related to the $p$+$p$ reference normalization is not shown.

More…

Suppression pattern of neutral pions at high transverse momentum in Au+Au collisions at sqrt(s_NN) = 200 GeV and constraints on medium transport coefficients

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 101 (2008) 232301, 2008.
Inspire Record 778168 DOI 10.17182/hepdata.141030

For Au + Au collisions at 200 GeV we measure neutral pion production with good statistics for transverse momentum, p_T, up to 20 GeV/c. A fivefold suppression is found, which is essentially constant for 5 < p_T < 20 GeV/c. Experimental uncertainties are small enough to constrain any model-dependent parameterization for the transport coefficient of the medium, e.g. \mean(q^hat) in the parton quenching model. The spectral shape is similar for all collision classes, and the suppression does not saturate in Au+Au collisions/ instead, it increases proportional to the number of participating nucleons, as N_part^2/3.

12 data tables

$\pi^0$ invariant yields for different centralities. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

$\pi^0$ invariant yields for different centralities. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

$\pi^0$ invariant yields for different centralities. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

More…

Enhanced production of direct photons in Au+Au collisions at sqrt(s_NN)=200 GeV and implications for the initial temperature

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 104 (2010) 132301, 2010.
Inspire Record 784417 DOI 10.17182/hepdata.141275

The production of low mass e+e- pairs for m_{e+e-} < 300 MeV/c^2 and 1 < p_T <5 GeV/c is measured in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. Enhanced yield above hadronic sources is observed. Treating the excess as internal conversions, the invariant yield of direct photons is deduced. In central Au+Au collisions, the excess of direct photon yield over p+p is exponential in transverse momentum, with inverse slope T = 221 +/- 19 (stat) +/- 19 (syst) MeV. Hydrodynamical models with initial temperatures ranging from 300--600 MeV at times of ~ 0.6 - 0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at ~ 170 MeV.

9 data tables

Electron pair mass distribution for Au+Au events for 1.0 < $p_T$ < 1.5 GeV/$c$.

Electron pair mass distribution for Au+Au events for 1.0 < $p_T$ < 1.5 GeV/$c$.

Electron pair mass distribution for Au+Au events for 1.0 < $p_T$ < 1.5 GeV/$c$.

More…

Kaon interferometric probes of space-time evolution in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 103 (2009) 142301, 2009.
Inspire Record 816475 DOI 10.17182/hepdata.141728

Bose-Einstein correlations of charged kaons are measured for Au+Au collisions at sqrt(s_NN) = 200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function if N_part^1/3 with zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r >~ 10 fm, although the bulk emission at lower radius is well-described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.

7 data tables

3D correlation function of charged kaon pairs measured for 0.3 < $k_T$ < 1.5 GeV/$c$ at 0-30% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

3D Gaussian HBT radius parameters for charged kaon pairs as a function of $N_{part}^{1/3}$ measured for 0.3 < $k_T$ < 1.5 GeV/$c$ and $m_T$ measured for 0-30% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

3D Gaussian HBT radius parameters for charged kaon pairs as a function of $N_{part}^{1/3}$ measured for 0.3 < $k_T$ < 1.5 GeV/$c$ and $m_T$ measured for 0-30% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

More…

Source breakup dynamics in Au+Au Collisions at sqrt(s_NN)=200 GeV via three-dimensional two-pion source imaging

The PHENIX collaboration Afanasiev, S. ; Aidala, Christine Angela ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 100 (2008) 232301, 2008.
Inspire Record 771583 DOI 10.17182/hepdata.140842

A three-dimensional (3D) correlation function obtained from mid-rapidity, low pT pion pairs in central Au+Au collisions at sqrt(s_NN)=200 GeV is studied. The extracted model-independent source function indicates a long range tail in the directions of the pion pair transverse momentum (out) and the beam (long). Model comparisons to these distensions indicate a proper breakup time \tau_0 ~ 9 fm/c and a mean proper emission duration \Delta\tau ~ 2 fm/c, leading to sizable emission time differences (<|\Delta \tau_LCM |> ~ 12 fm/c), partly due to resonance decays. They also suggest an outside-in 'burning' of the emission source reminiscent of many hydrodynamical models.

41 data tables

1D correlation function. Systematic errors are less than the statistical errors.

Experimental correlation moments $R^0(q)$ Data. Systematic errors are less than the statistical errors.

Experimental correlation moments $R^0(q)$ Fit. Systematic errors are less than the statistical errors.

More…

Centrality dependence of low-momentum direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 91 (2015) 064904, 2015.
Inspire Record 1296308 DOI 10.17182/hepdata.142985

The PHENIX experiment at RHIC has measured the centrality dependence of the direct photon yield from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV down to $p_T=0.4$ GeV/$c$. Photons are detected via photon conversions to $e^+e^-$ pairs and an improved technique is applied that minimizes the systematic uncertainties that usually limit direct photon measurements, in particular at low $p_T$. We find an excess of direct photons above the $N_{\rm coll}$-scaled yield measured in $p$$+$$p$ collisions. This excess yield is well described by an exponential distribution with an inverse slope of about 240 MeV/$c$ in the $p_T$ range from 0.6--2.0 GeV/$c$. While the shape of the $p_T$ distribution is independent of centrality within the experimental uncertainties, the yield increases rapidly with increasing centrality, scaling approximately with $N_{\rm part}^\alpha$, where $\alpha=1.48{\pm}0.08({\rm stat}){\pm}0.04({\rm syst})$.

6 data tables

Ratio $R_{\gamma}$ as function of photon $p_T$ from the 2007 and 2010 data sets in minimum-bias Au+Au collisions, and the $R_{\gamma}$ in the combined 2007+2010 measurement.

Ratio $R_{\gamma}$ as function of photon $p_T$ for the combined 2007 and 2010 data sets in different centrality bins.

Direct photon $p_T$ spectra in different centrality bins.

More…

J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 86 (2012) 064901, 2012.
Inspire Record 1127261 DOI 10.17182/hepdata.143112

We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.

7 data tables

Estimates used for the 39- and 62.4-GeV $J/\psi$ $p$+$p$ cross sections along with their uncertainties.

$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.

$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.

More…

Transverse momentum and centrality dependence of dihadron correlations in Au+Au collisions at sqrt(s_NN)=200 GeV: Jet-quenching and the response of partonic matter

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 77 (2008) 011901, 2008.
Inspire Record 751182 DOI 10.17182/hepdata.143605

Azimuthal angle \Delta\phi correlations are presented for charged hadrons from dijets for 0.4 < p_T < 10 GeV/c in Au+Au collisions at sqrt(s_NN) = 200 GeV. With increasing p_T, the away-side distribution evolves from a broad to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side can be divided into a partially suppressed 'head' region centered at Delta\phi ~ \pi, and an enhanced 'shoulder' region centered at Delta\phi ~ \pi +/- 1.1. The p_T spectrum for the 'head' region softens toward central collisions, consistent with the onset of jet quenching. The spectral slope for the 'shoulder' region is independent of centrality and trigger p_T, which offers constraints on energy transport mechanisms and suggests that the 'shoulder' region contains the medium response to energetic jets.

6 data tables

<p>Per-trigger yield versus $\Delta\phi$ for various trigger and partner $p_T$ ($p_T^A$ $\otimes$ $p_T^B$), in $p$+$p$ and 0-20% Au+Au collisions.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".

<p>Per-trigger yield versus $\Delta\phi$ for various trigger and partner $p_T$ ($p_T^A$ $\otimes$ $p_T^B$), in $p$+$p$ and 0-20% Au+Au collisions.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".</p></i>

<p>$R_{HS}$ versus $p_T^B$ for $p$+$p$ and Au+Au collisions for four trigger selections.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".</p></i>

More…

Measurement of higher cumulants of net-charge multiplicity distributions in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 011901, 2016.
Inspire Record 1378005 DOI 10.17182/hepdata.146751

We report the measurement of cumulants ($C_n, n=1\ldots4$) of the net-charge distributions measured within pseudorapidity ($|\eta|<0.35$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. $C_1/C_2$, $C_3/C_1$) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of $C_1/C_2 = \mu/\sigma^2$ and $C_3/C_1 = S\sigma^3/\mu$ can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.

10 data tables

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

More…