Transverse momentum spectra of charged particles in p anti-p collisions at s**(1/2) = 630-GeV

Bocquet, G. ; Norton, A. ; Wang, H.Q. ; et al.
Phys.Lett.B 366 (1996) 434-440, 1996.
Inspire Record 403649 DOI 10.17182/hepdata.48062

We have analysed a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment at the CERN collider. We have studied the production of charged particles with transverse momenta ( p T ) up to 25 GeV/c. The results are in agreement with QCD predictions. The rise of 〈 p T 〉 with charged particle multiplicity may be related to changing production of low p T particles.

11 data tables

No description provided.

No description provided.

No description provided.

More…

Inclusive production of strange particles p anti-p collisions at s**(1/2) = 630-GeV with UA1

Bocquet, G. ; Norton, A. ; Wang, H.Q. ; et al.
Phys.Lett.B 366 (1996) 441-446, 1996.
Inspire Record 403648 DOI 10.17182/hepdata.48059

We have analysed a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment at the CERN Sp p S collider. We have studied the production of K S 0 , Λ and Λ particles with transverse momenta ( p t ) up to 7 GeV/c and K ± up to 2 GeV/c. The kaon data are compared with a recent QCD prediction and are found to be in good agreement. The < p t > for K S 0 , Λ and Λ is seen to increase as a function of the charged particle multiplicity and is compared with charged particle production.

8 data tables

No description provided.

K0S Distribution parametrised in the form E*D3SIG/DP**3 = A / (1+ pT/pT0)**N. Best fit values for A, pT0 and N are given here.

No description provided.

More…

Energy dependence of the differences between the quark and gluon jet fragmentation

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 70 (1996) 179-196, 1996.
Inspire Record 403254 DOI 10.17182/hepdata.48064

Three jet events arising from decays of the Z boson, collected by the DELPHI detector, were used to measure differences in quark and gluon fragmentation. Gluon jets were anti-tagged by identifying b quark jets. Unbiased quark jets came from events with two jets plus one photon. Quark and gluon jet properties in different energy ranges were compared for the first time within the same detector. Quark and gluon jets of nearly the same energy in symmetric three jet event topologies were also compared. Using three independent methods, the average value of the ratio of the mean charged multiplicities of gluon and quark jets is $$< r >=1.241 pm 0.015 (stat.)pm 0.025 (syst.).$$ Gluon jets are broader and produce fragments with a softer energy spectrum than quark jets of equivalent energy. The string effect has been observed in fully symmetric three jet events. The measured ratio Rγ of the charged particle flow in the qq̅ inter-jet region of the qq̅g and qq̅γ samples agrees with the perturbative QCD expectation. The dependence of the mean charged multiplicity on the hadronic center-of-mass energy was analysed in photon plus n-jet events. The value for αs(MZ) determined from these data using a QCD prediction with corrections at leading and next-to-leading order is $$←pha_s(M_Z)=0.116pm 0.003 (stat.)pm 03009 (syst.).$$

2 data tables

No description provided.

Durham and JADE algoritms were used.


Measurement of Lambda(b) polarization in Z decays

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 365 (1996) 437-447, 1996.
Inspire Record 402895 DOI 10.17182/hepdata.48060

The Λ b polarization in hadronic Z decays is measured in semileptonic decays from the average energies of the charged lepton and the neutrino. In a data sample of approximately 3 million hadronic Z decays collected by the ALEPH detector at LEP between 1991 and 1994, 462 ± 31 Λ b candidates are selected using ( Λπ + )-lepton correlations. From this event sample, the Λ b polarization is measured to be P Λ b = −0.23 −0.20 +0.24 (stat.) −0.07 +0.08 (syst.).

1 data table

No description provided.


Search for the decay K+ --> pi+ neutrino anti-neutrino

Adler, S. ; Atiya, M.S. ; Chiang, I-H. ; et al.
Phys.Rev.Lett. 76 (1996) 1421-1424, 1996.
Inspire Record 400971 DOI 10.17182/hepdata.50260

An upper limit on the branching ratio for the decay $K^+ \! \rightarrow \! \pi^+ \nu \overline{\nu}$ is set at $2.4 \times 10^{-9}$ at the 90\% C.L. using pions in the kinematic region $214~{\rm MeV}/c < P_\pi < 231~{\rm MeV}/c$. An upper limit of $5.2 \times 10^{-10}$ is found on the branching ratio for decays $K^+ \! \rightarrow \! \pi^+ X^0$, where $X^0$ is any massless, weakly interacting neutral particle. Limits are also set for cases where $M_{X^0}>0$.

1 data table

Here UNSPEC is any massless, weakly interacting neutral particle. The measured exposure for the data reported is 3.49E+11 kaons stopped in a target.


First Measurement of the T-odd Correlation between the Z0 Spin and the Three-jet Plane Orientation in Polarized Z0 Decays to Three Jets

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.Lett. 75 (1995) 4173-4177, 1995.
Inspire Record 400920 DOI 10.17182/hepdata.19601

We present the first measurement of the correlation between the $Z^0$ spin and the three-jet plane orientation in polarized $Z^0$ decays into three jets in the SLD experiment at SLAC utilizing a longitudinally polarized electron beam. The CP-even and T-odd triple product $\vec{S_Z}\cdot(\vec{k_1}\times \vec{k_2})$ formed from the two fastest jet momenta, $\vec{k_1}$ and $\vec{k_2}$, and the $Z^0$ polarization vector $\vec{S_Z}$, is sensitive to physics beyond the Standard Model. We measure the expectation value of this quantity to be consistent with zero and set 95\% C.L. limits of $-0.022 &lt; \beta &lt; 0.039$ on the correlation between the $Z^0$-spin and the three-jet plane orientation.

1 data table

Asymmetry extracted from formula: (1/SIG(Q=3JET))*D(SIG)/D(COS(OMEGA)) = 9/16*[(1-1/3*(COS(OMEGA))**2) + ASYM*Az*(1-2*Pmis(ABS(COS(OMEGA))))*COS(OMEGA)], where OMEGA is polar angle of [k1,k2] vector (jet-plane normal), Pmis is the p robability of misassignment of of jet-plane normal, Az is beam polarization. Jets were reconstructed using the 'Durham' jet algorithm with a jet-resol ution parameter Yc = 0.005.


Measurements of the Q**2 dependence of the proton and deuteron spin structure functions g1(p) and g1(d)

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Lett.B 364 (1995) 61-68, 1995.
Inspire Record 401107 DOI 10.17182/hepdata.28431

The ratio g1/F1 has been measured over the range 0.03<x<0.6 and 0.3<Q2<10 (GeV/c)2 using deep-inelastic scattering of polarized electrons from polarized protons and deuterons. We find g1/F1 to be consistent with no Q2-dependence at fixed x in the deep-inelastic region Q~2>1 (GeV/c)2. A trend is observed for g1/F1 to decrease at lower Q2. Fits to world data with and without a possible Q2-dependence in g1/F1 are in agreement with the Bjorken sum rule, but Delta_q is substantially less than the quark-parton model expectation.

16 data tables

No description provided.

No description provided.

No description provided.

More…

Rapidity Gaps between Jets in Photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 369 (1996) 55-68, 1996.
Inspire Record 401492 DOI 10.17182/hepdata.44803

Photoproduction events which have two or more jets have been studied in the $W_{\gamma p}$ range 135GeV $< W_{\gamma p} <$ 280GeV with the ZEUS detector at HERA. A class of events is observed with little hadronic activity between the jets. The jets are separated by pseudorapidity intervals ($\Delta\eta$) of up to four units and have transverse energies greater than 6GeV. A gap is defined as the absence between the jets of particles with transverse energy greater than 300MeV. The fraction of events containing a gap is measured as a function of \deta. It decreases exponentially as expected for processes in which colour is exchanged between the jets, up to a value of $\Delta\eta \sim 3$, then reaches a constant value of about 0.1. The excess above the exponential fall-off can be interpreted as evidence for hard diffractive scattering via a strongly interacting colour singlet object.

2 data tables

No description provided.

No description provided.


Measurement of the Proton Structure Function ${F_2}$ at low ${x}$ and low ${Q~2}$ at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 69 (1996) 607-620, 1996.
Inspire Record 401305 DOI 10.17182/hepdata.44843

We report on a measurement of the proton structure function $F_2$ in the range $3.5\times10~{-5}\leq x \leq 4\times10~{-3}$ and 1.5 ${\rm GeV~2} \leq Q~2 \leq15$ ${\rm GeV~2}$ at the $ep$ collider HERA operating at a centre-of-mass energy of $\sqrt{s} = 300$ ${\rm GeV}$. The rise of $F_2$ with decreasing $x$ observed in the previous HERA measurements persists in this lower $x$ and $Q~2$ range. The $Q~2$ evolution of $F_2$, even at the lowest $Q~2$ and $x$ measured, is consistent with perturbative QCD.

13 data tables

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

More…

Measurement of $\alpha_S$ from Jet Rates in Deep Inelastic Scattering at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 363 (1995) 201-216, 1995.
Inspire Record 400436 DOI 10.17182/hepdata.44947

Jet production in deep inelastic scattering for $120<Q~2<3600$GeV$~2$ has been studied using data from an integrated luminosity of 3.2pb$~{-1}$ collected with the ZEUS detector at HERA. Jets are identified with the JADE algorithm. A cut on the angular distribution of parton emission in the $\gamma~*$-parton centre-of-mass system minimises the experimental and theoretical uncertainties in the determination of the jet rates. The jet rates, when compared to ${\cal O}$($\alpha_{s}$~2$) perturbative QCD calculations, allow a precise determination of $\alpha_{s}(Q)$ in three $Q~2$-intervals. The values are consistent with a running of $\alpha_{s}(Q)$, as expected from QCD. Extrapolating to $Q=M_{Z~0}$ yields $\alpha_{s}(M_{Z~0}) = 0.117\pm0.005(stat)~{+0.004}_{-0.005}(syst_{exp}) {\pm0.007}(syst_{theory})$.

3 data tables

2+1 jet rate as a function of ycut the jet algorithm cut-off value. Statistical errors only.

Measured values of Lambda-QCD in the MS Bar scheme and alpha_s as a function of Q**2. The second systematic uncertainty is related to the theoretical uncertainties .

Strong coupling constant alpha_s extrapolated to the Z0 mass.