A full set of optimized observables is measured in an angular analysis of the decay B$^0$$\to$ K$^*$(892)$^0\mu^+\mu^-$ using a sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV, collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 140 fb$^{-1}$. The analysis is performed in six bins of the squared invariant mass of the dimuon system, $q^2$, over the range 1.1 $\lt$$q^2$$\lt$ 16 GeV$^2$. The results are among the most precise experimental measurements of the angular observables for this decay and are compared to a variety of predictions based on the standard model. Some of these predictions exhibit tension with the measurements.
Results for the $F_\mathrm{L}$ angular observable. The first uncertainties are statistical and the second systematic.
Results for the $P_1$ angular observable. The first uncertainties are statistical and the second systematic.
Results for the $P_2$ angular observable. The first uncertainties are statistical and the second systematic.
Energy correlators that describe energy-weighted distances between two or three particles in a jet are measured using an event sample of $\sqrt{s}$ = 13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading logarithmic accuracy matched to a next-to-leading order calculation, the strong coupling is determined at the Z boson mass: $\alpha_\mathrm{S}(m_\mathrm{Z})$ = 0.1229 $^{+0.0040}_{-0.0050}$, the most precise $\alpha_\mathrm{S}(m_\mathrm{Z})$ value obtained using jet substructure observables.
Unfolded E2C distributions in data compared to MC predictions.
Unfolded E2C distributions in data compared to MC predictions.
Unfolded E2C distributions in data compared to MC predictions.
Inclusive and differential cross sections for Higgs boson production in proton-proton collisions at a centre-of-mass energy of 13.6 TeV are measured using data collected with the CMS detector at the LHC in 2022, corresponding to an integrated luminosity of 34.7 fb$^{-1}$. Events with the diphoton final state are selected, and the measured inclusive fiducial cross section is $\sigma_\text{fid}$ = 74 $\pm$ 11 (stat) $^{+5}_{-4}$ (syst) fb, in agreement with the standard model prediction of 67.8 $\pm$ 3.8 fb. Differential cross sections are measured as functions of several observables: the Higgs boson transverse momentum and rapidity, the number of associated jets, and the transverse momentum of the leading jet in the event. Within the uncertainties, the differential cross sections agree with the standard model predictions.
Differential fiducial cross sections for pT of the Higgs boson
Differential fiducial cross sections for rapidity of the Higgs boson
Differential fiducial cross sections for the number of jets
The mass of the top quark is measured in 36.3 fb$^{-1}$ of LHC proton-proton collision data collected with the CMS detector at $\sqrt{s}$ = 13 TeV. The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables to extract the top quark mass. The top quark mass is measured to be 171.77 $\pm$ 0.37 GeV. This approach significantly improves the precision over previous measurements.
Fit values for the top quark mass value and the nuisance parameters corresponding to the different uncertainty sources. All nuisance parameters have a prefit uncertainty of 1.
Covariance matrix for the top quark mass value and the nuisance parameters corresponding to the different uncertainty sources. All nuisance parameters have a prefit uncertainty of 1. The (statistical) uncertainty in mTop in the matrix includes the contributions from limited simulation sample sizes.
Measurements of the inclusive and differential fiducial cross sections for the Higgs boson production in the H → ZZ → 4ℓ (ℓ = e, μ) decay channel are presented. The results are obtained from the analysis of proton-proton collision data recorded by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{−1}$. The measured inclusive fiducial cross section is 2.73 ± 0.26 fb, in agreement with the standard model expectation of 2.86 ± 0.1 fb. Differential cross sections are measured as a function of several kinematic observables sensitive to the Higgs boson production and decay to four leptons. A set of double-differential measurements is also performed, yielding a comprehensive characterization of the four leptons final state. Constraints on the Higgs boson trilinear coupling and on the bottom and charm quark coupling modifiers are derived from its transverse momentum distribution. All results are consistent with theoretical predictions from the standard model.
Differential cross section measurements in bins of mass4l (v3)
Differential cross section measurements in bins of mass4l_zzfloating (v3)
Differential cross section measurements in bins of njets_pt30_eta4p7 (v3)
A search for the violation of the charge-parity ($CP$) symmetry in the production of top quarks in association with Z bosons is presented, using events with at least three charged leptons and additional jets. The search is performed in a sample of proton-proton collision data collected by the CMS experiment at the CERN LHC in 2016-2018 at a center-of-mass energy of 13 TeV and in 2022 at 13.6 TeV, corresponding to a total integrated luminosity of 173 fb$^{-1}$. For the first time in this final state, observables that are odd under the $CP$ transformation are employed. Also for the first time, physics-informed machine-learning techniques are used to construct these observables. While for standard model (SM) processes the distributions of these observables are predicted to be symmetric around zero, $CP$-violating modifications of the SM would introduce asymmetries. Two $CP$-odd operators $\mathcal{O}_\text{tW}^\text{I}$ and $\mathcal{O}_\text{tZ}^\text{I}$ in the SM effective field theory are considered that may modify the interactions between top quarks and electroweak bosons. The obtained results are consistent with the SM prediction within two standard deviations, and exclusion limits on the associated Wilson coefficients of $-$2.7 $\lt$$c_\text{tW}^\text{I}$$\lt$ 2.5 and $-$0.2 $\lt$$c_\text{tZ}^\text{I}$$\lt$ 2.0 are set at 95% confidence level. The largest discrepancy is observed in $c_\text{tZ}^\text{I}$ where data is consistent with positive values, with an observed local significance with respect to the SM hypothesis of 2.5 standard deviations, when only linear terms are considered.
A measurement of event-shape variables is presented, using a data sample produced in a special run with approximately one inelastic proton-proton collision per bunch crossing. The data were collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 64 $\mu$b$^{-1}$. A number of observables related to the overall distribution of charged particles in the collisions are corrected for detector effects and compared with simulations. Inclusive event-shape distributions, as well as differential distributions of event shapes as functions of charged-particle multiplicity, are studied. None of the models investigated is able to satisfactorily describe the data. Moreover, there are significant features common amongst all generator setups studied, particularly showing data being more isotropic than any of the simulations. Multidimensional unfolded distributions are provided, along with their correlations.
The unfolded charged particle multiplicity distribution of inelastic proton-proton collisions with at least three charged particles with transverse momentum higher than 0.5 GeV and pseudorapidity between -2.4 and 2.4. The total area of the histogram is normalised to 1.
The unfolded charged particle invariant mass distribution of inelastic proton-proton collisions with at least three charged particles with transverse momentum higher than 0.5 GeV and pseudorapidity between -2.4 and 2.4. The total area of the histogram is normalised to 1.
The unfolded charged particle sphericity distribution of inelastic proton-proton collisions with at least three charged particles with transverse momentum higher than 0.5 GeV and pseudorapidity between -2.4 and 2.4. The total area of the histogram is normalised to 1.
A search for resonances in top quark pair ($\text{t}\bar{\text{t}}$) production in final states with two charged leptons and multiple jets is presented, based on proton-proton collision data collected by the CMS experiment at the CERN LHC at $\sqrt{s}$ = 13 TeV, corresponding to 138 fb$^{-1}$. The analysis explores the invariant mass of the \ttbar system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic $\text{t}\bar{\text{t}}$ threshold compared to the nonresonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ($^1$S$^{[1]}_0$) quasi-bound toponium state, as predicted by nonrelativistic quantum chromodynamics. Using a simplified model for $^1$S$^{[1]}_0$ toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8$^{+1.2}_{-1.4}$ pb.
Observed cross section of $\eta_t$
This Letter presents the first measurements of the groomed jet radius $R_\mathrm{g}$ and the jet girth $g$ in events with an isolated photon recoiling against a jet in lead-lead (PbPb) and proton-proton (pp) collisions at the LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The observables $R_\mathrm{g}$ and $g$ provide a quantitative measure of how narrow or broad a jet is. The analysis uses PbPb and pp data samples with integrated luminosities of 1.7 nb$^{-1}$ and 301 pb$^{-1}$, respectively, collected with the CMS experiment in 2018 and 2017. Events are required to have a photon with transverse momentum $p_\mathrm{T}^\gamma$$>$ 100 GeV and at least one jet back-to-back in azimuth with respect to the photon and with transverse momentum $p_\mathrm{T}^\text{jet}$ such that $p_\mathrm{T}^\text{jet} / p_\mathrm{T}^\gamma$$>$ 0.4. The measured $R_\mathrm{g}$ and $g$ distributions are unfolded to the particle level, which facilitates the comparison between the PbPb and pp results and with theoretical predictions. It is found that jets with $p_\mathrm{T}^\text{jet} / p_\mathrm{T}^\gamma$$>$ 0.8, i.e., those that closely balance the photon $p_\mathrm{T}^\gamma$, are narrower in PbPb than in pp collisions. Relaxing the selection to include jets with $p_\mathrm{T}^\text{jet} / p_\mathrm{T}^\gamma$$>$ 0.4 reduces the narrowing of the angular structure of jets in PbPb relative to the pp reference. This shows that selection bias effects associated with jet energy loss play an important role in the interpretation of jet substructure measurements.
Unfolded jet girth distribution in PbPb normalized to the number of jets that pass the $x_J$>0.4 selection. All systematic uncertainties are bin-to-bin fully correlated (allowing for sign-changes bin-to-bin).The covaraince matrices are provided for the statistical uncertainties from data and MC in this HepData record.
Unfolded groomed jet radius distribution in PbPb normalized to the number of jets that pass the $x_J$>0.4 selection. All systematic uncertainties are bin-to-bin fully correlated (allowing for sign-changes bin-to-bin).The covaraince matrices are provided for the statistical uncertainties from data and MC in this HepData record.The negative (-0.05,0) bin accounts for jets that failed the soft-drop grooming condition.
Unfolded jet girth distribution in PbPb normalized to the number of jets that pass the $x_J$>0.8 selection. All systematic uncertainties are bin-to-bin fully correlated (allowing for sign-changes bin-to-bin).The covaraince matrices are provided for the statistical uncertainties from data and MC in this HepData record.
The measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb$^{-1}$. The inclusive fiducial cross section is measured to be $\sigma_\mathrm{fid}$ = 73.4 $_{-5.3}^{+5.4}$ (stat) ${}_{-2.2}^{+2.4}$ (syst) fb, in agreement with the standard model expectation of 75.4 $\pm$ 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed.
Differential fiducial higgs to diphoton cross section with respect to $p_{\mathrm{T}}^{\gamma\gamma}$. The last bin in the differential observable extends to infinity and the measured fiducial cross section in this bin is devided by the given bin width
Differential fiducial higgs to diphoton cross section with respect to $p_{\mathrm{T}}^{\gamma\gamma}$. The last bin in the differential observable extends to infinity and the measured fiducial cross section in this bin is devided by the given bin width
Correlation between the measured fiducial cross sections in the different bins of $p_{\mathrm{T}}^{\gamma\gamma}$