A systematic analysis is presented on the reaction K + p → K ∗0 (890) Δ ++ for nine incident momenta between 4.6–16.0 GeV/ c . Cross sections, differential cross sections and vector meson single density matrix elements are given. As a function of energy, little if any change is observed in either the shapes of the differential cross sections or in the values of the density matrix elements. The data are interpreted in terms of current ideas on t -channel exchange mechanisms.
No description provided.
No description provided.
No description provided.
Experimental results are presented for the available channels in the 1.2 GeV/ c π + p interaction. An isobaric model with incoherent addition of the amplitudes is used to determine the π, Δ and N ∗ abundance rates in the π + π o p final state. The multipole parameters in the density matrix of the Δ ++ are determined as functions of its production angle.
No description provided.
LEGENDRE POLYNOMIAL FIT USED TO CORRECT FOR ELASTIC EVENTS LOST FROM THE FORWARD BIN.
No description provided.
The ratio between the cross sections for the reactions π − p→ χ ↳ 2γ 0 n and π − p → η →2 γ n has been measured to be (2.4 ± 0.9) × 10 −2 , (2.1 ± 0.6) × 10 −2 and (2.8 ± 1.3) × 10 −2 at 3.8,6,8 and 12 GeV/ c incident momentum respectively.
ETAPRIME CROSS SECTIONS DEDUCED FROM THEIR RATIO TO ETA PRODUCTION, USING THE RESULTS OF O. GUISAN ET AL., PL 18, 200 (1965).
Results are reported based on a study of π − p interactions at 147 GeV/ c in the FERMILAB 30-inch Proportional Wire Hybrid Bubble Chamber System. We have measured the topological cross sections and separated two-prong elastic and inelastic channels. In addition, we have extracted leading particle cross sections using the increased momentum resolution of the downstream proportional wire chambers. We have compared our results with experiments and predictions of a simple fragmentation hyphothesis.
No description provided.
Channel cross sections have been determined for p p annihilations into final states containing 3 to 9 pions at 4.6 GeV/ c . The moments of both the charged and neutral pion multiplicity distributions are presented and model predictions are critically examined.
No description provided.
A study has been made of the individual channels that contribute to the reaction K − p → Λ 0 + neutrals in the K − momentum range from 525 to 820 MeV/ c . Total cross sections are presented for the K − p → Λ 0 η 0 , Σ 0 Σ 0 π 0 , Λ 0 π 0 , Σ 0 π 0 and Σ 0 π 0 π 0 channels and differential cross sections for K − p → Λ 0 π 0 . The data were obtained in a heavy liquid bubble chamber experiment with an average gamma detection efficiency of 70%. Only events with all decay gammas detected were used for analysis. This is the first of a series of papers on this subject and presents the experimental technique in detail.
No description provided.
Data are presented at 13 momenta between 0.64 and 1.51 GeV/ c for the coherent processes K + d → K + d, K + d→ K 0 d π + and K + d → K + d π + π − . Distributions for K + d elastic scattering are given in the (0.03<| t |<0.22) (GeV/ c ) 2 range.
No description provided.
No description provided.
No description provided.
Bubble chamber film of 10 GeV/ c K − p interactions was scanned automatically by an H.P.D. to look for small angle scatters in the | t |-range from 0.008 to 0.1 GeV 2 . Combining the 1800 events so obtained with 22 000 elastic events obtained from normal scanning (| t | > 0.06 GeV 2 ), the real part of the elastic scattering amplitude was found to be (+25 ± 10)% of the imaginary part. Evidence is found for a change in slope in the differential cross-section distribution, from 9.8 ± 0.6 GeV −2 in the | t |-range below 0.1 GeV 2 to 7.1 ± 0.2 GeV −2 in the range 0.12 < | t | ⩽ 0.4 GeV 2 .
No description provided.
THE 10 PCT ERROR IS THE RESULT OF A 5 PCT ERROR FROM THE FIT AND AN 8 PCT NORMALIZATION UNCERTAINTY.
No description provided.
The reaction K−n→Σ−η has been studied near threshold. The production angular distribution and the cross-section as a function of energy were measured. The combined angular distributions of this experiment and two previous ones suggest that aJ=1/2 amplitude dominates in Σ−η production. Our cross-section can be fitted with a Σ−1η resonance of mass 1785±12 and width 89±33, or it can be fitted in a zero-effective-range scattering approximation with a scattering length of (0.92±0.12)±i(0.04±0.28) fm.
No description provided.
CROSS SECTION NEAR THRESHOLD CORRESPONDS TO A SCATTERING LENGTH OF (0.92 +- 0.12) +- I*(0.04 +- 0.28) FM.
PRODUCTION ANGULAR DISTRIBUTION - ASSUMED SYMMETRIC IN COS(THETA).
We present results of complete measurements of the two-prong events observed in a 50 000-picture exposure of the 30-in. hydrogen bubble chamber to a 205−GeVc proton beam at the National Accelerator Laboratory. Using kinematic fitting, elastic and inelastic events are separated and cross sections are obtained. The total two-prong cross section is measured to be 9.77 ± 0.40 mb, of which 2.85 ± 0.26 mb represents the inelastic contribution. The total elastic cross section is measured to be 6.92 ± 0.44 mb. Our data are consistent with the break in dσdt at |t|∼0.1−0.2 (GeVc)2 observed at the CERN ISR. A prominent low-mass enhancement is observed in the distribution of missing mass squared from the slow proton for the inelastic events. An analysis based on the missing-mass spectrum and the particle rapidities shows that this low-mass enhancement accounts for about 77% of the total inelastic two-prong cross section. The diffractive cross section in the two-prong events is 2.20 ± 0.25 mb, in agreement with certain two-component models.
USING A TOTAL CROSS SECTION OF 39.0 +- 1.0 MB.
No description provided.