An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test
The measured jet broadening distributions (B) in quark and gluon jets seperately.
Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.
The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.
Hadronic Z decay data taken with the ALEPH detector at LEP1 are used to measure the three-jet rate as well as moments of various event-shape variables. The ratios of the observables obtained from b-tagged events and from an inclusive sample are determined. The mass of the b quark is extracted from a fit to the measured ratios using a next-to-leading order prediction including mass effects. Taking the first moment of the y3 distribution, which is the observable with the smallest hadronization corrections and systematic uncertainties, the result is: mb(MZ) = [3.27+-0.22(stat) +-0.22(exp)+-0.38(had)+-0.16(theo)] GeV/c2. The measured ratio is alternatively employed to test the flavour independence of the strong coupling constant for b and light quarks.
No description provided.
The hadronic final states observed with the ALEPH detector at LEP in ${\rm e}^ + {\rm e}^-$ annihilation
Mean charged particle multiplicities at different c.m. energies.
XP distribution at c.m. energy 133.0 GeV.
XP distribution at c.m. energy 161.0 GeV.
The hadronic photon structure function $F_2^\gamma(x,Q^2)$ is measured from data taken with the ALEPH detector at LEP. At centre-of-mass energies between
Measured value of F2/ALPHAE at a mean Q**2 of 17.3 GeV**2.
Measured value of F2/ALPHAE at a mean Q**2 of 67.2 GeV**2.
Statistical correlation coefficients for the F2 measurements at Q**2 = 17.3 GeV**2.
The inclusive production of D$^{*\pm}$ mesons in two-photon collisions is measured with the ALEPH detector at $\epem$ centre-of-mass energies from 183$\unit{GeV}$ to 209$\unit{GeV}$. A total of $360 \pm 27$ D$^{*\pm}$ meson events were observed from an integrated luminosity of 699\unit{pb^{-1}}$. Contributions from direct and single-resolved rocesses are separated using the ratio of the transverse momentum $p_{\rm t}^{\rm D^{*\pm}}$ of the D$^{*\pm}$ to the visible invariant mass $W_{\mathrm{vis}}$ of the event. Differential cross sections of D$^{*\pm}$ production as functions of $p_{\rm t}^{\rm D^{*\pm}}$ and the pseudorapidity $|\eta^{\rm D^{*\pm}}| $ are measured in the range $ 2\unit{GeV}/c < p_{\rm t}^{\rm D^{*\pm}} < 12\unit{GeV}/c $ and $ |\eta^{\rm D^{*\pm}}| < 1.5 $. They are compared to next-to-leading order (NLO)perturbative QCD calculations. The extrapolation of the integrated visible D$^{*\pm}$ cross section to the total charm cross section, based on the Pythia Monte Carlo program, yields $ \sigma (\epem \to \epem \ccbar)_ {=197\unit{GeV}} = 731 \pm 74_{\mathrm{stat}} \pm 47_{\mathrm{syst}} \pm 157_{\mathrm{extr}} \unit{pb} $.
Total extrapolated charm production cross section. The second DSYS error isdue to the uncertainty in the extrapolation.
Visible cross section with the acceptance range.
Visible cross section within the acceptance ranges for the three decay modes observed.
The fragmentation of b quarks into B mesons is studied with four million hadronic Z decays collected by the ALEPH experiment during the years 1991-1995. A semi-exclusive reconstruction of B->l nu D(*) decays is performed, by combining lepton candidates with fully reconstructed D(*) mesons while the neutrino energy is estimated from the missing energy of the event. The mean value of xewd, the energy of the weakly-decaying B meson normalised to the beam energy, is found to be mxewd = 0.716 +- 0.006 (stat) +- 0.006 (syst) using a model-independent method; the corresponding value for the energy of the leading B meson is mxel = 0.736 +- 0.006 (stat) +- 0.006 (syst). The reconstructed spectra are compared with different fragmentation models.
Normalized binned spectra for weakly-decaying (WD) leading (L) B-mesons.
The extracted spectra spectra for weakly-decaying (WD) leading (L) B-mesons.
Statistical error matrix for the Weakly Decaying distribution in units of 10**-6.
The production of final states involving one or more energetic photons from e + e − collisions is studied in a sample of 58.5 pb −1 of data recorded at a centre-of-mass energy of 183 GeV by the ALEPH detector at LEP. The e + e − → ν ν ̄ γ(γ) and e + e − → γγ(γ) cross sections are measured. The data are in good agreement with predictions based on the Standard Model and are used to set upper limits on the cross sections for anomalous photon production in the context of two supersymmetric models and for various extensions to QED. In particular, in the context of a super-light gravitino model a cross section upper limit of 0.38 pb is placed on the process e + e − → G ̃ G ̃ γ , allowing a lower limit to be set on the mass of the gravitino. Limits are also set on the mass of the lightest neutralino in Gauge Mediated Supersymmetry Breaking models. In the case of equal ee ∗ γ and ee γ couplings a 95% C.L. lower limit on M e ∗ of 250 GeV /c 2 is obtained.
No description provided.
No description provided.
The full statistics of hadronic Z decays collected with the ALEPH detector are analysed to measure, by three methods, the ratio, ${\rm R_c}$ , of the partial decay
No description provided.
Inclusive branching ratios involving b to tau transitions are measured in approximately four million hadronic Z decays collected by the ALEPH detector at LEP. The fully-inclusive branching ratio b -> tau nu X and the semi-inclusive branching ratio b -> tau nu D*+/- X are measured to be (2.43 +/- 0.20 +/- 0.25)% and (0.88 +/- 0.31 +/- 0.28)%, in agreement with the standard model predictions. Upper limits on the branching fractions b -> tau nu and b -> s nu nubar are set to 8.3 10**-4 and 6.4 10**-4 at the 90% C.L. These results allow a 90% C.L. lower limit of 0.40 (GeV/c**2)**-1 to be set on the tan(beta)/mH+/- ratio, in the framework of type-II two-Higgs-doublet mode
TAN(BETA) is the two-Higgs-doublet model parameter, while M_H is the mass of charged Higgs.
The cross sections for single vector boson production in the We ν and Zee channels are measured from the data collected by the ALEPH detector at LEP for centre-of-mass energies between 183 and 209 GeV. These data correspond to a total integratedluminosity of 683 pb −1 . Single-W production is studied in both hadronic and leptonic decay channels. Hadronic and dimuon decays are used for single-Z production. The measured cross sections agree with the Standard Model predictions.
Measured cross sections for single W production in the leptonic and hadronic decay channels of the W separately and combined.
The measured single Z0 production cross section.
Z0 --> MU+ MU- cross section averaged over all c.m. energies.