Date

Investigating strangeness enhancement with multiplicity in pp collisions using angular correlations

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
CERN-EP-2024-133, 2024.
Inspire Record 2789572 DOI 10.17182/hepdata.154226

A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson ${\rm K^0_S}$ and the double-strange baryon $\Xi^{\pm}$ is measured, in each event, in the azimuthal direction of the highest-$p_{\rm T}$ particle (``trigger" particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at $\sqrt{s}=5.02$ TeV and $\sqrt{s}=13$ TeV using the ALICE detector at the LHC. The per-trigger yields of ${\rm K^0_S}$ and $\Xi^{\pm}$ are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading $\Xi^{\pm}$/${\rm K^0_S}$ yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of $\Xi^{\pm}$ with respect to ${\rm K^0_S}$ is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The ${\rm K}^{0}_{\rm{S}}$ and $\Xi^{\pm}$ per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely PYTHIA 8.2 with the Monash tune, PYTHIA 8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of ${\rm K}^{0}_{\rm{S}}$ and $\Xi^{\pm}$.

18 data tables

Yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $-1.2<\Delta\eta<1.2$ and $-\pi/2<\Delta\varphi<3/2\pi$.

Transverse-to-leading yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $0.86<|\Delta\eta|<1.2$ and $0.96<\Delta\varphi<1.8$.

Toward-leading yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $|\Delta\eta|<0.86$ and $|\Delta\varphi|<1.1$.

More…

Elliptic anisotropy measurement of the f$_0$(980) hadron in proton-lead collisions and evidence for its quark-antiquark composition

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIN-20-002, 2023.
Inspire Record 2741119 DOI 10.17182/hepdata.146017

Despite the f$_0$(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($\mathrm{q\bar{q}}$) meson, a tetraquark ($\mathrm{q\bar{q}q\bar{q}}$) exotic state, a kaon-antikaon ($\mathrm{K\bar{K}}$) molecule, or a quark-antiquark-gluon ($\mathrm{q\bar{q}g}$) hybrid. This paper reports strong evidence that the f$_0$(980) state is an ordinary $\mathrm{q\bar{q}}$ meson, inferred from the scaling of elliptic anisotropies ($v_2$) with the number of constituent quarks ($n_\mathrm{q}$), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f$_0$(980) state is reconstructed via its dominant decay channel f$_0$(980) $\to$$\pi^+\pi^-$, in proton-lead collisions recorded by the CMS experiment at the LHC, and its $v_2$ is measured as a function of transverse momentum ($p_\mathrm{T}$). It is found that the $n_q$ = 2 ($\mathrm{q\bar{q}}$ state) hypothesis is favored over $n_q$ = 4 ($\mathrm{q\bar{q}q\bar{q}}$ or $\mathrm{K\bar{K}}$ states) by 7.7, 6.3, or 3.1 standard deviations in the $p_\mathrm{T}$$\lt$ 10, 8, or 6 GeV/$c$ ranges, respectively, and over $n_\mathrm{q}$ = 3 ($\mathrm{q\bar{q}g}$ hybrid state) by 3.5 standard deviations in the $p_\mathrm{T}$$\lt$ 8 GeV/$c$ range. This result represents the first determination of the quark content of the f$_0$(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates.

6 data tables

The elliptic flow, $v_{2}$, for $f_0(980)$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

The elliptic flow after nonflow subtraction, $v_{2}^{sub}$, for $f_0(980)$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

The elliptic flow after nonflow subtraction, $v_{2}^{sub}/2$, for $f_0(980)$ as a function of $<KE_{T}>/2$ in pPb collision at 8.16 TeV.

More…

Investigating the nature of the K$^*_0(700)$ state with $\pi^\pm$K$^0_{\rm S}$ correlations at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 856 (2024) 138915, 2024.
Inspire Record 2739149 DOI 10.17182/hepdata.153749

The first measurements of femtoscopic correlations with the particle pair combinations $\pi^\pm$K$^0_{\rm S}$ in pp collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K$^*_0(700)$ particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a $\pi^\pm$K$^0_{\rm S}$ pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K$^*_0(700)$. The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K$^*_0(700)$ is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K$^*_0(700)$ resonance.

12 data tables

Experimental $C(k^*)$, 0-100% mult. class, $k_{\rm T}>0$.

PYTHIA $C(k^*)$, 0-100% mult. class, $k_{\rm T}>0$.

Experimental $C(k^*)$, 0-100% mult. class, $k_{\rm T}<0.5$ GeV/$c$.

More…

Common femtoscopic hadron-emission source in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2023-267, 2023.
Inspire Record 2725934 DOI 10.17182/hepdata.152623

The femtoscopic study of pairs of identical pions is particularly suited to investigate the effective source function of particle emission, due to the resulting Bose-Einstein correlation signal. In small collision systems at the LHC, pp in particular, the majority of the pions are produced in resonance decays, which significantly affect the profile and size of the source. In this work, we explicitly model this effect in order to extract the primordial source in pp collisions at $\sqrt{s} = 13$ TeV from charged $\pi$-$\pi$ correlations measured by ALICE. We demonstrate that the assumption of a Gaussian primordial source is compatible with the data and that the effective source, resulting from modifications due to resonances, is approximately exponential, as found in previous measurements at the LHC. The universality of hadron emission in pp collisions is further investigated by applying the same methodology to characterize the primordial source of K-p pairs. The size of the primordial source is evaluated as a function of the transverse mass ($m_{\rm T}$) of the pairs, leading to the observation of a common scaling for both $\pi$-$\pi$ and K-p, suggesting a collective effect. Further, the present results are compatible with the $m_{\rm T}$ scaling of the p-p and p$-\Lambda$ primordial source measured by ALICE in high multiplicity pp collisions, providing compelling evidence for the presence of a common emission source for all hadrons in small collision systems at the LHC. This will allow the determination of the source function for any hadron--hadron pairs with high precision, granting access to the properties of the possible final-state interaction among pairs of less abundantly produced hadrons, such as strange or charmed particles.

29 data tables

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.2<$m_T$<1.4 GeV/$c^{2}$).

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.4<$m_T$<1.5 GeV/$c^{2}$).

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.5<$m_T$<1.8 GeV/$c^{2}$).

More…

Femtoscopic correlations of identical charged pions and kaons in pp collisions at $\sqrt{s}=13$ TeV with event-shape selection

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.C 109 (2024) 024915, 2024.
Inspire Record 2709104 DOI 10.17182/hepdata.146805

Collective behavior has been observed in high-energy heavy-ion collisions for several decades. Collectivity is driven by the high particle multiplicities that are produced in these collisions. At the CERN Large Hadron Collider (LHC), features of collectivity have also been seen in high-multiplicity proton-proton collisions that can attain particle multiplicities comparable to peripheral Pb-Pb collisions. One of the possible signatures of collective behavior is the decrease of femtoscopic radii extracted from pion and kaon pairs emitted from high-multiplicity collisions with increasing pair transverse momentum. This decrease can be described in terms of an approximate transverse mass scaling. In the present work, femtoscopic analyses are carried out by the ALICE Collaboration on charged pion and kaon pairs produced in pp collisions at $\sqrt{s}=13$ TeV from the LHC to study possible collectivity in pp collisions. The event-shape analysis method based on transverse sphericity is used to select for spherical versus jet-like events, and the effects of this selection on the femtoscopic radii for both charged pion and kaon pairs are studied. This is the first time this selection method has been applied to charged kaon pairs. An approximate transverse-mass scaling of the radii is found in all multiplicity ranges studied when the difference in the Lorentz boost for pions and kaons is taken into account. This observation does not support the hypothesis of collective expansion of hot and dense matter that should only occur in high-multiplicity events. A possible alternate explanation of the present results is based on a scenario of common emission conditions for pions and kaons in pp collisions for the multiplicity ranges studied.

74 data tables
More…

Study of azimuthal anisotropy of $\Upsilon$(1S) mesons in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 850 (2024) 138518, 2024.
Inspire Record 2706679 DOI 10.17182/hepdata.131311

The azimuthal anisotropy of $\Upsilon$(1S) mesons in high-multiplicity proton-lead collisions is studied using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 8.16 TeV. The $\Upsilon$(1S) mesons are reconstructed using their dimuon decay channel. The anisotropy is characterized by the second Fourier harmonic coefficients, found using a two-particle correlation technique, in which the $\Upsilon$(1S) mesons are correlated with charged hadrons. A large pseudorapidity gap is used to suppress short-range correlations. Nonflow contamination from the dijet background is removed using a low-multiplicity subtraction method, and the results are presented as a function of $\Upsilon$(1S) transverse momentum. The azimuthal anisotropies are smaller than those found for charmonia in proton-lead collisions at the same collision energy, but are consistent with values found for $\Upsilon$(1S) mesons in lead-lead interactions at a nucleon-nucleon center-of-mass energy of 5.02 TeV.

2 data tables

The $p_{\mathrm{T}}$ dependent $v_{2}^{\textrm{sub}}$ values of $\Upsilon(1S)$ mesons measured in the high-multiplicity region of $70 \leq N^{\text{offline}}_{\text{trk}} < 300$, where a low-multiplicity region of $N^{\text{offline}}_{\text{trk}} < 50$ is used to estimate and correct for the dijet contribution.

The $p_{\mathrm{T}}$ dependent $v_{2}^{\textrm{sub}}$ values of $\Upsilon(1S)$ mesons measured in the high-multiplicity region of $70 \leq N^{\text{offline}}_{\text{trk}} < 300$, where a low-multiplicity region of $N^{\text{offline}}_{\text{trk}} < 50$ is used to estimate and correct for the dijet contribution.


K$^0_\mathrm{S}$ and $\Lambda(\overline\Lambda)$ two-particle femtoscopic correlations in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 857 (2024) 138936, 2024.
Inspire Record 2623117 DOI 10.17182/hepdata.133573

Two-particle correlations are presented for K$^0_\mathrm{S}$, $\Lambda$, and $\overline\Lambda$ strange hadrons as a function of relative momentum in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The dataset corresponds to an integrated luminosity of 0.607 nb$^{-1}$ and was collected using the CMS detector at the CERN LHC. These correlations are sensitive to quantum statistics and to final-state interactions between the particles. The source size extracted from the K$^0_\mathrm{S}$K$^0_\mathrm{S}$ correlations is found to decrease from 4.6 to 1.6 fm in going from central to peripheral collisions. Strong interaction scattering parameters (i.e., scattering length and effective range) are determined from the $\Lambda$K$^0_\mathrm{S}$ and $\Lambda\Lambda$ (including their charge conjugates) correlations using the Lednick$\'y$-Lyuboshitz model and are compared to theoretical and other experimental results.

14 data tables

The $K^{0}_{S}$ Invariant mass in $0-80\%$ centrality,

The $\Lambda (\overline{\Lambda})$ Invariant mass in $0-80\%$ centrality.

$K^{0}_{S} K^{0}_{S}$ correlation meassurement in $0-10\%$ centrality.

More…

Two-particle transverse momentum correlations in pp and p-Pb collisions at LHC energies

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 107 (2023) 054617, 2023.
Inspire Record 2182733 DOI 10.17182/hepdata.137819

Two-particle transverse momentum differential correlators, recently measured in Pb--Pb collisions at energies available at the CERN Large Hadron Collider (LHC), provide an additional tool to gain insights into particle production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density, of the medium created in Pb-Pb collisions. The longitudinal long-range correlations and the large azimuthal anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies resemble manifestations of collective behaviour. This suggests that locally equilibrated matter may be produced in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at $\sqrt{s} = 7$ TeV and $\sqrt{s_{\rm NN}} = 5.02$ TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators and their evolution from pp and p--Pb to Pb--Pb collisions are additionally compared to predictions from Monte Carlo event generators, and the potential presence of viscous effects is discussed.

24 data tables

Two-particle transverse momentum correlation $G_{2}^{\rm CD}$ for 0$-$5% multiplicity class pp collisions at $\sqrt{s}=7\;\text{TeV}$.

Two-particle transverse momentum correlation $G_{2}^{\rm CD}$ for 30$-$40% multiplicity class pp collisions at $\sqrt{s}=7\;\text{TeV}$.

Two-particle transverse momentum correlation $G_{2}^{\rm CD}$ for 70$-$80% multiplicity class pp collisions at $\sqrt{s}=7\;\text{TeV}$.

More…

Version 2
Towards the understanding of the genuine three-body interaction for p$-$p$-$p and p$-$p$-\Lambda$

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.A 59 (2023) 145, 2023.
Inspire Record 2092560 DOI 10.17182/hepdata.134041

Three-body nuclear forces play an important role in the structure of nuclei and hypernuclei and are also incorporated in models to describe the dynamics of dense baryonic matter, such as in neutron stars. So far, only indirect measurements anchored to the binding energies of nuclei can be used to constrain the three-nucleon force, and if hyperons are considered, the scarce data on hypernuclei impose only weak constraints on the three-body forces. In this work, we present the first direct measurement of the p$-$p$-$p and p$-$p$-\Lambda$ systems in terms of three-particle correlation functions carried out for pp collisions at $\sqrt{s} = 13$ TeV. Three-particle cumulants are extracted from the correlation functions by applying the Kubo formalism, where the three-particle interaction contribution to these correlations can be isolated after subtracting the known two-body interaction terms. A negative cumulant is found for the p$-$p$-$p system, hinting to the presence of a residual three-body effect while for p$-$p$-\Lambda$ the cumulant is consistent with zero. This measurement demonstrates the accessibility of three-baryon correlations at the LHC.

11 data tables

The (p-p)-p correlation function obtained using the data-driven approach

The (p-p)-$\Lambda$ correlation function obtained using the data-driven approach

The p-(p-$\Lambda$) correlation function obtained using the data-driven approach

More…

Constraining the ${\rm\overline{K}N}$ coupled channel dynamics using femtoscopic correlations at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 340, 2023.
Inspire Record 2088954 DOI 10.17182/hepdata.132766

The interaction of $\rm{K}^{-}$ with protons is characterised by the presence of several coupled channels, systems like ${\rm \overline{K}^0}$n and $\pi\Sigma$ with a similar mass and the same quantum numbers as the $\rm{K}^{-}$p state. The strengths of these couplings to the $\rm{K}^{-}$p system are of crucial importance for the understanding of the nature of the $\Lambda(1405)$ resonance and of the attractive $\rm{K}^{-}$p strong interaction. In this article, we present measurements of the $\rm{K}^{-}$p correlation functions in relative momentum space obtained in pp collisions at $\sqrt{s}~=~13$ TeV, in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV, and (semi)peripheral Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV. The emitting source size, composed of a core radius anchored to the $\rm{K}^{+}$p correlation and of a resonance halo specific to each particle pair, varies between 1 and 2 fm in these collision systems. The strength and the effects of the ${\rm \overline{K}^0}$n and $\pi\Sigma$ inelastic channels on the measured $\rm{K}^{-}$p correlation function are investigated in the different colliding systems by comparing the data with state-of-the-art models of chiral potentials. A novel approach to determine the conversion weights $\omega$, necessary to quantify the amount of produced inelastic channels in the correlation function, is presented. In this method, particle yields are estimated from thermal model predictions, and their kinematic distribution from blast-wave fits to measured data. The comparison of chiral potentials to the measured $\rm{K}^{-}$p interaction indicates that, while the $\pi\Sigma-\rm{K}^{-}$p dynamics is well reproduced by the model, the coupling to the ${\rm \overline{K}^0}$n channel in the model is currently underestimated.

17 data tables

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in pp collisions at $\sqrt{s}=13$ TeV.

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in p-Pb collisions at $\sqrt{s_{\mathrm {NN}}}=5.02 $ TeV (0-20%).

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV (20-40%).

More…