Date

Bubble Chamber Study of Photoproduction by 2.8-GeV and 4.7-GeV Polarized Photons. 1. Cross-Section Determinations and Production of rho0 and Delta++ in the Reaction gamma p --> p pi+ pi-

Ballam, Joseph ; Chadwick, G.B. ; Gearhart, R. ; et al.
Phys.Rev.D 5 (1972) 545, 1972.
Inspire Record 67165 DOI 10.17182/hepdata.3635

Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.

20 data tables

FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.

No description provided.

NO TMIN CORRECTION HAS BEEN MADE.

More…

Proton Compton scattering between 650 mev and 1350 mev

Barton, J.S. ; Booth, P.S.L. ; Carroll, L.J. ; et al.
Phys.Lett.B 42 (1972) 297-300, 1972.
Inspire Record 85012 DOI 10.17182/hepdata.28187

Compton scattering from protons has been measured between 650 MeV and 1350 MeV for angles between 60° and 140° CM.

1 data table

No description provided.


Measurement of proton and neutron electromagnetic form-factors at squared four momentum transfers up to 3-GeV/c$^2$

Bartel, W. ; Busser, F.W. ; Dix, W.r. ; et al.
Nucl.Phys.B 58 (1973) 429-475, 1973.
Inspire Record 83685 DOI 10.17182/hepdata.69173

Electron-proton elastic scattering cross sections have been measured at squared four-momentum transfers q 2 of 0.67, 1.00, 1.17, 1.50, 1.75, 2.33 and 3.00 (GeV/ c ) 2 and Electron scattering angles θ e between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E p and G M p were determined. The results indicate that G E p ( q 2 ) decreases faster with increasing q 2 than G M p ( q 2 ). Quasi-elastic electron-deuteron cross sections have been determined at values of q 2 = 0.39, 0.565, 0.78, 1.0 and 1.5 (GeV/ c ) 2 and scattering angles between 10° and 12°. At q 2 = 0.565 (GeV/ c 2 data have also been taken with θ e = 35° and at q 2 = 1.0 and 1.5 (GeV/ c ) 2 with θ e = 86°. Electron-proton as well as electron-neutron scattering cross sections have been deduced by the ratio method. The theoretical uncertainties of this procedure are shown to be small by comparison of the bound with the free proton cross sections. The magnetic form factor of the neutron G M n derived from the data is consistent with the scaling law. The charge form factor of the neutron is found to be small.

14 data tables

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

More…

Evidence for J(PC) = 4++ for the S (1930) Meson from anti-p p Backward Elastic Scattering

D'Andlau, C. ; Cohen-Ganouna, J. ; Laloum, M. ; et al.
Phys.Lett.B 58 (1975) 223-227, 1975.
Inspire Record 103552 DOI 10.17182/hepdata.27801

We report on partial results of the analysis of a p̄p backward elastic scattering experiment, between 175 and 750 MeV/ c . Various evidences are given of the resonant nature of a backward peak at the S-meson mass. Analysis leads to J PC =4 ++ , firmly connected to other experimental data with I G =1 − . All results agree for an assignment to the A 2 trajectory.

11 data tables

No description provided.

No description provided.

No description provided.

More…

K0(L) p --> K0(s) p Scattering in the 1.5-GeV-2.3-GeV Energy Region

Alexander, G. ; Bar-Nir, I. ; Benary, O. ; et al.
Phys.Lett.B 58 (1975) 484-488, 1975.
Inspire Record 2246 DOI 10.17182/hepdata.27761

The K L o p → K S o p differential and total cross-section and the forward scattering amplitude phase φ have been measured in the 1.5 to 2.3 GeV centre of mass energy range. The data is compared with predictions based on recent K ± N phase shift solutions. Best agreement is found for K + N solutions which do not warrant an I=0 P 1 2 exotic Z ∗ o (1800) baryon.

2 data tables

No description provided.

No description provided.


Study of photoproduction on hydrogen in a streamer chamber with tagged photons for 1.6 GeV $ < E_\gamma <$ 6.3 GeV Topological and reaction cross sections

The Aachen-Hamburg-Heidelberg-Munich collaboration Struczinski, W. ; Dittmann, P. ; Eckardt, V. ; et al.
Nucl.Phys.B 108 (1976) 45-74, 1976.
Inspire Record 100089 DOI 10.17182/hepdata.35779

We have studied photoproduction using a 1 m streamer chamber at DESY and a tagged photon beam with an energy range of 1.6 GeV < E γ < 6.3 GeV. We analysed approximately 30 000 events and report topological, channel and resonance production cross sections for a large number of reactions with three and five outgoing charged particles.

29 data tables

CHANNEL CROSS SECTIONS FOR 3, 5 AND 7 PRONG REACTIONS.

'PARAMETRIZATION'.

'INTERFERENCE'.

More…

Measurement of the Real Part of the K- n Forward Scattering Amplitude Between 1.2-GeV/c and 2.6-GeV/c

Jenni, P. ; Baillon, P. ; Bricman, C. ; et al.
Nucl.Phys.B 105 (1976) 1-22, 1976.
Inspire Record 100905 DOI 10.17182/hepdata.35921

The differential cross sections of the combined elastic and break-up K − d reaction have been measured at 1.21, 1.42 and 2.61 GeV/ c incident K − momentum. The measurements have been performed at the CERN PS using multiwire proportional chambers. The values of the invariant momentum transfer t explored (0.0005<| t |<0.1 GeV 2 ) include the Coulomb-nuclear interference region. The differential cross sections have been analysed in the framework of the Glauber impact-parameter formalism. The observed interference effects have been used to derive the ratio of the real to imaginary part of the forward K − n nuclear amplitude.

4 data tables

SUM OF COHERENT AND BREAK-UP SCATTERING.

SUM OF COHERENT AND BREAK-UP SCATTERING.

SUM OF COHERENT AND BREAK-UP SCATTERING.

More…

Coulomb-Nuclear Interference in pi+- p and K+- p Elastic Scattering Below 3-GeV: Measurements, Real Parts and K+- p Dispersion Relations

Baillon, P. ; Bricman, C. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 105 (1976) 365-430, 1976.
Inspire Record 101037 DOI 10.17182/hepdata.13243

The differential cross sections for π + p elastic scattering at0.6, 1.0, 1.5, 2.0, GeV/ c for π - p at 1.0, 1.5, 2.0 GeV/ c , for K - p at 1.2, 1.8, 2.6 GeV/ c and for K - p at 0.9, 1.2, 1.4, 1.6, 1.8, 2.6 GeV/ c have been measured with an overall accuracy ofthe order of 1 to 2% in an electronics experiment over the angular region corresponding to momentum transfer t between 0.0005 and 0.10 GeV 2 . Making use of the interference effects between the Coulomb and the nuclear interaction, we have determined the magnitude and sign of the real part of the scattering amplitude near t = 0. The K ± p real parts have been used in a dispersion relation to derive the value of the KNΛ coupling constant.

20 data tables

'TABLE'. 'BIN'.

'TABLE'. 'BIN'.

'TABLE'. 'BIN'.

More…

Observation of a DIP-Bump Structure in Differential Cross-Section for anti-p + p --> anti-N + n in the 700-MeV/c to 760-MeV/c Momentum Range

Bogdanski, M. ; Emura, T. ; Ganguli, S.N. ; et al.
Phys.Lett.B 62 (1976) 117-120, 1976.
Inspire Record 109019 DOI 10.17182/hepdata.27664

Based on a sample of about 3500 events, we have measured the total and differential cross sections of p p → n n in the 700–760 MeV/ c incident momentum region. It is found that σ CE = 10.7 ± 0.2 mb at the average momentum of 730 MeV/ c . The differential angular distribution is characterised by a sharp peak and a dip in the forward direction followed by a secondary maximum. The position of the dip corresponds to | t | ≈ m π 2 . These results are compared with the predictions of the model of Bryan-Phillips. On the other hand, this dip-bump structure can be well understood on a simple picture involving a π exchange and a constant background (for | t | ≲ 3 m π 2 ).

3 data tables

No description provided.

No description provided.

No description provided.


Rho Production by Virtual Photons

Joos, P. ; Ladage, A. ; Meyer, H. ; et al.
Nucl.Phys.B 113 (1976) 53-92, 1976.
Inspire Record 108749 DOI 10.17182/hepdata.35708

The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.

10 data tables

DIPION CHANNEL CROSS SECTION.

THE TOTAL CROSS SECTION WAS OBTAINED BY THE AUTHORS FROM A FIT TO THE SINGLE ARM DATA OF S. STEIN ET AL., PR D12, 1884 (1975).

No description provided.

More…