None
No description provided.
No description provided.
Quasiexclusive neutral meson production in pN-interactions is studied in experiments with the SPHINX facility operating in a proton beam from the IHEP accelerator (Ep=70 GeV). The cross sections and the parameters of the differential distributions for πo, ω, η and Ko production in the deep fragmentation region (xF > 0.79 ÷ 0.86) are presented. The results show that such proton quasiexclusive reactions with baryon exchange may be promising in searches for exotic mesons.
No description provided.
No description provided.
Data on the graph only.
A study of the reactions p Xe → K + K + X , p Xe → K + H(H → Σ − p)X and p Xe → K + K + H(H → Σ − p)X was performed using the 700-litre xenon bubble chamber DIANA, exposed to the 1 GeV/ c antiproton beam of ITEP (Moscow). From a sample of 7.8 · 10 5 antiproton annihilations at low energy in xenon nuclei 4 events were observed for the reaction p Xe | → K + K + X at rest ( P p ≤ 400 MeV /c ) and 8 for the same reaction in flight ( 400 ≤ P p ≤ 900 MeV /c ). The corresponding probabilities turned out to be 3.1 · 10 −5 and 3.4 · 10 −5 , respectively. No H -event was found in the two semi-inclusive reactions p Xe → K + HX and p Xe → K + K + HX . This lead to the upper limits 6 · 10 −6 and 8 · 10 −6 (90% C.L.), respectively. The corresponding upper limit for the fully inclusive reaction p Xe → HX turned out to be 1.2 · 10 −5 (90% C.L.), which is about one order of magnitude lower than the actual value reported in the literature.
No description provided.
None
No description provided.
None
CROSS SECTION WAS ESTIMATED ASSUMING IT'S INDEPENDENCE OF THE ANTIPROTON M OMENTUM.
The double strangeness production has been observed in two final states of annihilation of antiprotons at momentum less than 0.9 GeV/ c on Xe nuclei: K + K + X (8 events) and K + K 0 ΛX (6 events). The probabilities of the reaction p Xe → K + K + X vary from 2 · 10 −5 (at rest) up to 7 · 10 −5 (in flight). The reaction p Xe → K + K 0 ΛX is observed only in flight with probability 3 · 10 −4 . The properties of the observed reactions are similar to those resulting from the cascade process with production of Ξ hyperon: p N → K ∗ −K ∗ , K ∗ → Kπ, −K ∗ N → ΞK, ΞN → ΛΛ . The new upper limit on the production probability of the stable H ( S = −2) dibaryon in the reaction Xe → K + K + H(H → Σ − p)X was obtained to be < 2 · 10 − (90% C . L .).
No description provided.
None
No description provided.
No description provided.
No description provided.
The rr- + p- n + rr0 charge-exchange scattering and the rr- + p- n + 1J ( 1J- 2y) reaction were investigated in 1.55-4.5 BeVIc region in a 17-liter propane-xenon bubble chamber. The total cross sections of both reactions were measured in this region. The angular distributions of the rr0 mesons in the charge-exchange reaction were obtained. The backward exchange-scattering cross sections du( rr- + p- n + rr 0 )ldQ were estimated.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
We present data from Fermilab experiment E781 (SELEX) on the hadroproduction asymmetry for anti-Lambda_c compared to Lambda_c+ as a function of xF and pt2 distributions for Lambda_c+. These data were measured in the same apparatus using incident pi-, sigma- beams at 600 GeV/c and proton beam at 540 GeV/c. The asymmetry is studied as a function of xF. In the forward hemisphere with xF >= 0.2 both baryon beams exhibit very strong preference for producing charm baryons rather than charm antibaryons, while the pion beam asymmetry is much smaller. In this energy regime the results show that beam fragments play a major role in the kinematics of Lambda_c formation, as suggested by the leading quark picture.
The number of events reconstructed in the signal mass region of LAMBDA/C+ production. Statistical errors only.
The number of events reconstructed in the signal mass region of LAMBDA/CBAR- production. Statistical errors only.
The number of events reconstructed in the signal mass region of LAMBDA/C+ production. Statistical errors only.