A description is given of an experiment to study elastic scattering of π ± , K ± and p on protons at c.m. scattering angles from 45° to 100° at incident laboratory momenta 20 GeV/ c and 30 GeV/ c . The corresponding t range is from −6.2 (GeV/ c ) 2 to −28 (GeV/ c ) 2 . There are no previous observations for these reactions in this t range. High intensity and large geometrical acceptance were required in order to measure the low cross sections. The experiment used a double-arm spectrometer. MWPCs were used for reconstruction, and threshold and differential Čerenkov counters for identification. Scintillation counters, Čerenkov counters and a hadron calorimeter were used in the trigger. The trigger logic utilized specially designed matrices and a hard wired microprocessor. The π − p elastic scattering cross sections follow approximately the dimensional counting rule from 3.5 GeV/ c .and up to 30 GeV/ c . The cross sections decrease by seven orders of magnitude in this energy range. The data is compared to quark models. None of these models give a comprehensive description of the results. However, some modifications to these models improve their consistency with the data.
EARLIER RESULTS GIVEN IN 'A'.
No description provided.
No description provided.
The results presented in this paper were obtained from a 105 000 frame exposure of the FNAL Hybrid Proportional Wire Chamber-30 inch Bubble Chamber System, in a tagged beam of 147 GeV/ c negative particles. Elastic, total and topological cross sections were obtained for both π − p and K − p interactions. Comparisons with other data, taken with various beam particles over large momentum intervals, show good agreement with KNO scaling, and similarity in the scaling behavior of σ n for the different beam particles.
THESE CROSS SECTIONS ARE NOT NORMALIZED TO ANY OTHER ABSOLUTE MEASUREMENT. THE ERRORS INCLUDE SOME SYSTEMATIC ERRORS.
THE FORWARD CROSS SECTION AGREES WELL WITH THE OPTICAL POINT FROM TOTAL CROSS SECTION MEASUREMENTS.
THESE CROSS SECTIONS ARE NOT NORMALIZED TO ANY OTHER ABSOLUTE MEASUREMENT.
Compton scattering from the proton was investigated at s=6.9 (GeV/c)**2 and \t=-4.0 (GeV/c)**2 via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in excellent agreement with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton and in disagreement with a prediction of pQCD based on a two-gluon exchange mechanism.
Polarization transfer parameters.
The differential cross sections of the elastic backward scattering reaction π − n→n π − has been measured at 23 and 40 GeV/ c in the u -interval −0.07 ⩽ u ⩽ 0.01 (GeV/ c ) 2 .
No description provided.
No description provided.
The neutron-proton elastic differential cross section has been measured for incident momenta between 10 and 70 GeV/c and for values of the momentum transfer squared between 0.1 and 2.8 (GeV/c) 2 . The forward peak and the break at about ∣ t ∣ = 1 (GeV/ c ) 2 are very similar to corresponding pp data.
No description provided.
No description provided.
None
X ERROR D(-T)/(-T) = 2.0000 PCT.
X ERROR D(-T)/(-T) = 2.0000 PCT.
X ERROR D(-T)/(-T) = 2.0000 PCT.
We report a high precision measurement of the transverse single spin asymmetry $A_N$ at the center of mass energy $\sqrt{s}=200$ GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The $A_N$ was measured in the four-momentum transfer squared $t$ range $0.003 \leqslant |t| \leqslant 0.035$ $\GeVcSq$, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of $A_N$ and its $t$-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this $\sqrt{s}$, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.
The asymmetry $\varepsilon(\varphi)/(P_B + P_Y)$ for various $t$-intervals.
The measured single spin asymmetry $A_N$ for five $-t$ intervals.
Fitted value of $r_5$.
We present results of measurements of K ± p and p p elastic scattering and of the annihilation reactions p p →π + π − and p p → K + K − at an incident laboratory momentum of 5 GeV/ c . Nearly complete angular distributions were obtained. Results are also presented for π -meson proton elastic scattering in the momentum transfer ranges 2 < − t < 8 (GeV/ c ) 2 (for π + ) and 0.16 < − t < 7 (GeV/ c ) 2 (for π − ). All measurements were done in one experimental geometry. The measured differential cross sections range from 10 to 10 −5 mb/(GeV/ c ) 2 .
-U = T + 8.486 GEV**2.
THE DATA FOR -T = 7.31 TO 8.45 GEV**2 WERE NORMALIZED TO OTHER EXPERIMENTS.
-U = T + 8.304 GEV**2.
The differential cross-section for 5 GeV/ cπ + p and π − p elastic scattering have been measured in the c.m. angular region 27° < θ cm < 130° corresponding to 0.5 < | t | < 7.8 (GeV/ c ) 2 . Dips are observed in both reactions at − t = 2.8 and 4.8 (GeV/ c ) 2 where the cross-sections are approximately 0.1 μ b/(GeV/ c ) 2 .
No description provided.
None
.
INTEGRATED D(SIG)/D(T).
OBTAINED FROM FIT D(SIG)/D(T)=A*EXP(B*T+C*T**2) IN 0.05 < -T < 0.3.