Characteristics of multi-particle production in proton-proton collisions at $\sqrt{s}$=7 TeV are studied as a function of the charged-particle multiplicity, $N_{ch}$. The produced particles are separated into two classes: those belonging to jets and those belonging to the underlying event. Charged particles are measured with pseudorapidity |η|<2.4 and transverse momentum $p_T$ > 0.25 GeV/c. Jets are reconstructed from charged-particles only and required to have $p_T$ > 5 GeV/c. The distributions of jet $p_T$, average $p_T$ of charged particles belonging to the underlying event or to jets, jet rates, and jet shapes are presented as functions of $N_{ch}$ and compared to the predictions of the PYTHIA and HERWIG event generators. Predictions without multi-parton interactions fail completely to describe the $N_{ch}$-dependence observed in the data. For increasing $N_{ch}$, PYTHIA systematically predicts higher jet rates and harder $p_T$ spectra than seen in the data, whereas HERWIG shows the opposite trends. At the highest multiplicity, the data–model agreement is worse for most observables, indicating the need for further tuning and/or new model ingredients.
Mean $p_T$, all charged particles.
Mean $p_T$, UE charged particles.
Mean $p_T$, in-jet charged particles.
Measurements of jet characteristics from inclusive jet production in proton-proton collisions at a centre-of-mass energy of 7 TeV are presented. The data sample was collected with the CMS detector at the LHC during 2010 and corresponds to an integrated luminosity of 36 inverse picobarns. The mean charged hadron multiplicity, the differential and integral jet shape distributions, and two independent moments of the shape distributions are measured as functions of the jet transverse momentum for jets reconstructed with the anti-kT algorithm. The measured observables are corrected to the particle level and compared with predictions from various QCD Monte Carlo generators.
The measured differential jet shape $\rho(r)$ for jets with 20 GeV $< p_{\mathrm{T}} <$ 25 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 25 GeV $< p_{\mathrm{T}} <$ 30 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 30 GeV $< p_{\mathrm{T}} <$ 40 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
Jet shapes have been measured in inclusive jet production in proton-proton collisions at sqrt(s) = 7 TeV using 3 pb^{-1} of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-kt algorithm with transverse momentum 30 GeV < pT < 600 GeV and rapidity in the region |y| < 2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderate jet rapidity dependence. Within QCD, the data test a variety of perturbative and non-perturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 2.8.
High-statistics differential cross sections and spin density matrix elements for the reaction $\gamma p \to p \omega$ have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into $\cos{\theta_{CM}^{\omega}}$ bins of width 0.1. These are the most precise and extensive $\omega$ photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.
Differential cross section for the W range 1.72 to 1.73 GeV.
Differential cross section for the W range 1.73 to 1.74 GeV.
Differential cross section for the W range 1.74 to 1.75 GeV.
The exclusive reaction $\gamma p \to p \pi^+ \pi^-$ was studied in the photon energy range 3.0 - 3.8 GeV and momentum transfer range $0.4<-t<1.0$ GeV$^2$. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was about 20 pb$^{-1}$. The reaction was isolated by detecting the $\pi^+$ and proton in CLAS, and reconstructing the $\pi^-$ via the missing-mass technique. Moments of the di-pion decay angular distributions were derived from the experimental data. Differential cross sections for the $S$, $P$, and $D$-waves in the $M_{\pi^+\pi^-}$ mass range $0.4-1.4$ GeV were derived performing a partial wave expansion of the extracted moments. Besides the dominant contribution of the $\rho(770)$ meson in the $P$-wave, evidence for the $f_0(980)$ and the $f_2(1270)$ mesons was found in the $S$ and $D$-waves, respectively. The differential production cross sections $d\sigma/dt$ for individual waves in the mass range of the above-mentioned mesons were extracted. This is the first time the $f_0(980)$ has been measured in a photoproduction experiment.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Elements of the spin density matrix for W bosons in e+e- -> W+W- -> qqln events are measured from data recorded by the OPAL detector at LEP. This information is used calculate polarised differential cross-sections and to search for CP-violating effects. Results are presented for W bosons produced in e+e- collisions with centre-of-mass energies between 183 GeV and 209 GeV. The average fraction of W bosons that are longitudinally polarised is found to be (23.9 +- 2.1 +- 1.1)% compared to a Standard Model prediction of (23.9 +- 0.1)%. All results are consistent with CP conservation.
The fraction of longitudinal polarization for leptonically and hadronically decaying W bosons. The average values for all the centre of mass energies and for both lepton and hadron decay combined are also given.
The luminosity weighted average over all the centre of mass energies of the diagonal elements of the RHO++ and RHO-- SDM as a function of the cosine of the angle of the W- boson for the leptonic decay channel.
The luminosity weighted average over all the centre of mass energies of the diagonal element of the RHO00 SDM as a function of the cosine of the angle of the W- boson for both leptonic and hadronic decay channels, and combined.
We report differential cross sections for the production of D*(2010) produced in 500 GeV/c pi^- nucleon interactions from experiment E791 at Fermilab, as functions of Feynman-x (x_F) and transverse momentum squared (p_T^2). We also report the D* +/- charge asymmetry and spin-density matrix elements as functions of these variables. Investigation of the spin-density matrix elements shows no evidence of polarization. The average values of the spin alignment are \eta= 0.01 +- 0.02 and -0.01 +- 0.02 for leading and non-leading particles, respectively.
Acceptance corrected differential cross sections for D*+- production as a function of XL, Feynman X.
Acceptance corected differential cross sections for D*+- production as a function of PT**2.
Charge production asymmetry as a function of Feynman X.
The helicity density matrix elements rho[00] of rho(770)+- and omega(782) mesons produced in Z decays have been measured using the OPAL detector at LEP. Over the measured meson energy range, the values are compatible with 1/3, corresponding to a statistical mix of helicity -1, 0 and +1 states. For the highest accessible scaled energy range 0.3 < x_E < 0.6, the measured rho[00] values of the rho(770)+- and the omega are 0.373 +- 0.052 and 0.142 +- 0.114, respectively. These results are compared to measurements of other vector mesons.
The errors are statistical and systematic unceratinties added in quadrature. The statistical errors (STAT=...) are also given.
The errors are statistical and systematic unceratinties added in quadrature. The statistical errors (STAT=...) are also given.
Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.
Inclusive K*= cross section.
Helicity density matrices elemnts.
Ratios of helicity density matrices elements.
The spin density matrix elements for the ϱ 0 , K ∗0 (892) and F produced in hadronic Z 0 decays are measured in the DELPHI detector. There is no evidence for spin alignment of the K ∗0 (892) and F in the region x p ≤ 0.3 ( x p = p p beam ), where ϱ 00 = 0.33 ± 0.05 and ϱ 00 = 0.30 ± 0.04, respectively. In the fragmentation region, x p ≥ 0.4, there is some indication for spin alignment of the ϱ 0 and K ∗0 (892), since ϱ 00 = 0.43 ± 0.05 and ϱ 00 = 0.46 ± 0.08, respectively. These values are compared with those found in meson-induced hadronic reactions. For the F, ϱ 00 = 0.30 ± 0.04 for x p ≥ 0.4 and 0.55 ± 0.10 for x p ≥ 0.7. The off-diagonal spin density matrix element ϱ 1-1 is consistent with zero in all cases.
Helicity density matrices elements. The statistical and systematic errors are combined quadratically.
Helicity density matrices elements. The statistical and systematic errors are combined quadratically.
Helicity density matrices elements. The statistical and systematic errors are combined quadratically.