Cross sections and decay distribution moments are presented for the reaction p p → Δ ++ Δ ++ at 3.6 GeV/ c , and compared with previously published data at 9.1 and 12 GeV/ c . With the aid of the quark model, we have isolated the natural and unnatural parity exchange contributions and shown them to accord with expectations based on simple Regge-pole exchanges.
DOUBLE RESONANCE PRODUCTION IS 62 +- 2 PCT OF CHANNEL.
Experimental results on the reaction π − p → K ∗0 (890) X 0 at 10 GeV /c are presented. By using the K ∗0 polarization measurements, a detailed study of the production has been carried out as a function of the missing mass squared and of the four-momentum trasnfer squared to the K ∗0 . We found that: (a) K ∗0 production is dominated by natural parity exchange; (b) K ∗0 helicity-zero production dominates the unnatural parity exchange contribution and (c) the main features of the reaction are in agreement with the predictions of the finite mass sum rules.
TO TAL (NATURAL+UNATURAL PARITY EXCHANGE) CROSS-SECTIONS.
NATURAL PARITY EXCHANGE CROSS-SECTIONS.
UNATURAL PARITY EXCHANGE CROSS-SECTIONS.
K ∗0 (890) production in the hyperchange exchange reaction π − p → K ∗0 (890) Λ 0 Σ 0 at 10 GeV/ c (28 448 events) is discussed. An amplitude analysis in the t ′ range up to 1 GeV 2 shows that the production mechanism is dominated by natural parity exchange (∼84%). Comparisons are made with predictions from a Regge model and a quark model.
DENSITY MATRIX ELEMENTS IN THE GOTTFRIED-JACKSON SYSTEM ALLOWING FOR COHERENT S-WAVE BACKGROUND TO P-WAVE BREIT-WIGNER K*(892)0 RESONANCE.
No description provided.
None
FOR THE FPRIME A PURE 2+ STATE IS ASSUMED AND ONLY JZ=+1,0,-1 CONTRIBUTIONS ARE CONSIDERED.
No description provided.
No description provided.
A sample of 56 909 events of the reaction π − p→K + K − n at 10 GeV/ c has been measured in the Omega Spectrometer at CERN. In the K + K − system, besides production of mesons in the S ∗ /φ, f 0 / A 2 , g /ω ∗ and h regions we observe a new structure at 2.20 GeV with a width of the order of 200 MeV.
BREIT-WIGNER RESONANCES PLUS SMOOTH BACKGROUND FITTED TO K+ K- MASS SPECTRUM. RESTRICTIVE T-CUTS TO ENHANCE THE X(2200) GIVE CONSISTENT RESULTS.
We present results on an amplitude analysis of the K + K − system produced in the reaction π − p→K + K − n from threshold up to 2.2 GeV. The branching ratios of f 0 and f' to K K have been determined. In the low mass region of the K K system the observation of an S-wave enhancement at 1.3 GeV and the interference of the f 0 -A 2 -f' mesons are studied. We observe a 3 − structure in the mass region of 1.7 GeV which is consistent with g 0 production. With this interpretation the branching ratio g→ K K has been determined. Evidence for a new structure in the J p = 2 + wave around 1.8 GeV with a width of ∼200 MeV is presented.
HELICITY ZERO D-WAVE AMPLITUDE FITTED BY SUM OF BREIT-WIGNER RESONANCES. F 14 GIVES T-DEPENDENCE. ALSO EVIDENCE FOR 1.8 GEV STATE WITH 0.60 +- 0.13 MUB PRODUCTION CROSS SECTION.
FROM HELICITY ZERO F-WAVE AMPLITUDE ASSUMING PREDOMINANTLY G(1680)0 PRODUCTION. F 16 GIVES T-DEPENDENCE.
The elastic and one-pion production channels from the pp interaction at four c.m. energies between 2150 and 2240 MeV are described. No evidence of formation of the narrow T(2195) meson is observed. The elastic differential cross section is measured in the range of squared four-momentum transfer ¦t¦ > 0.03 GeV2. This has been extrapolated to the forward direction where Re/Im parts of the amplitude are deduced. The one-pion final states are well described by assuming that they are dominated by Δ-production.
The reaction π − p → φφ n has been isolated at 16 GeV/ c and its cross section determined to be 40 ± 10 nb. The φφ mass spectrum shows a threshold enhancement between 2.1 and 2.5 GeV. A successful description of the angular content of the φφ system requires two interferingss J P = 2 + states.
No description provided.
SLOPE OF DIFFERENTIAL TP(P=3,P=2) DISTRIBUTION.
The reaction π − p → K + K − π − p at 16 GeV/ c was studied in the CERN OMEGA spectrometer and a partial-wave analysis (PWA) of the low-mass (K + K − π − ) system (1.3–2.0 GeV) was performed. Only states in the unnatural spin-parity series produced by natural parity exchange are important and they approximately conserve t -channel helicity. The 1 + S K ∗ K wave dominates the low-mass (K + K − π − ) region. We observe an enhancement in 2 − P K ∗ K wave at a mass of 1.7 GeV, consistent with the decay of the A 3 resonance.
TOTAL ACCEPTANCE CORRECTED CROSS SECTION.
ACCEPTANCE CORRECTED.
MOST IMPORTANT CONTRIBUTING STATES CORRECTED FOR ACCEPTANCE.
A study of the reaction π − p → X − p based on 1.27 × 10 6 events, corresponding to a mean sensitivity of 200 events/μb, is presented. Properties of the exclusive channels π − p → π − π 0 p, π + π − π − p, π + π − π − π 0 p, π + π + π − π − π − p and π + π + π − π − π − π 0 p are discussed.