Energy dependence of $\pi^{\pm}$, $p$ and $\bar{p}$ transverse momentum spectrafor Au+Au collisions at $\sqrt{s_{\mathrm {NN}}}$~=~62.4 and 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 655 (2007) 104-113, 2007.
Inspire Record 747299 DOI 10.17182/hepdata.100592

We study the energy dependence of the transverse momentum (pT) spectra for charged pions, protons and anti-protons for Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV. Data are presented at mid-rapidity (|y| < 0.5) for 0.2 < pT < 12 GeV/c. In the intermediate pT region (2 < pT < 6 GeV/c), the nuclear modification factor is higher at 62.4 GeV than at 200 GeV, while at higher pT (pT >7 GeV/c) the modification is similar for both energies. The p/pi+ and pbar/pi- ratios for central collisions at \sqrt{s_NN} = 62.4 GeV peak at pT ~ 2 GeV/c. In the pT range where recombination is expected to dominate, the p/pi+ ratios at 62.4 GeV are larger than at 200 GeV, while the pbar/pi- ratios are smaller. For pT > 2 GeV/c, the pbar/pi- ratios at the two beam energies are independent of pT and centrality indicating that the dependence of the pbar/pi- ratio on pT does not change between 62.4 and 200 GeV. These findings challenge various models incorporating jet quenching and/or constituent quark coalescence.

2 data tables match query

Midrapidity (|y| < 0.5) transverse momentum spectra for pions, protons, anti-protons for various event centrality classes for Au+Au at sqrt(sNN) = 62.4 GeV. Also shown to study the energy dependence are the central 0-12% pion, proton, anti-proton spectra for Au+Au at sqrt(sNN) = 200 GeV.

Centrality and pT dependence of RCP for pions and protons for Au+Au at sqrt(sNN) = 62.4 GeV. For studying the energy dependence, the corresponding RCP for central 0-12% Au+Au at sqrt(sNN) = 200 GeV are shown. RAA for pions at 62.4 GeV (0-10%) and 200 GeV (0-12%) are also shown.


High $p_{T}$ non-photonic electron production in $p$+$p$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 83 (2011) 052006, 2011.
Inspire Record 889563 DOI 10.17182/hepdata.96051

We present the measurement of non-photonic electron production at high transverse momentum ($p_T > $ 2.5 GeV/$c$) in $p$ + $p$ collisions at $\sqrt{s}$ = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons ($\frac{e^++e^-}{2}$) at 3 GeV/$c < p_T <~$10 GeV/$c$ from bottom and charm meson decays to be ${d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0}$ = 4.0$\pm0.5$({\rm stat.})$\pm1.1$({\rm syst.}) nb and ${d\sigma_{D\to e} \over dy_e}|_{y_e=0}$ = 6.2$\pm0.7$({\rm stat.})$\pm1.5$({\rm syst.}) nb, respectively.

1 data table match query

The momentum over energy $p/E_0$ distribution ($p$ - momentum, $E_0$ - the energy of the most energetic tower in a Barrel Electromagnetic Calorimeter cluster) from unlike-sign electron candidate pairs, like-sign electron candidate pairs and unlike-minus-like.


Measurement of Charge Multiplicity Asymmetry Correlations in High Energy Nucleus-Nucleus Collisions at 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 89 (2014) 044908, 2014.
Inspire Record 1222542 DOI 10.17182/hepdata.100169

A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au+Au collisions at 200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, $\Delta$, between the like- and unlike-sign up/down $-$ left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic $v^{\rm obs}_{2}$), where $\Delta=(1.3\pm1.4({\rm stat})^{+4.0}_{-1.0}({\rm syst}))\times10^{-5}+(3.2\pm0.2({\rm stat})^{+0.4}_{-0.3}({\rm syst}))\times10^{-3}v^{\rm obs}_{2}$ for 20-40% Au+Au collisions. The implications for the proposed chiral magnetic effect are discussed.

1 data table match query

The relative charge asymmetry correlations, $\langle A_{+}A_{-}\rangle_{ UD}/\langle A_{+}A_{-}\rangle_{ LR}$, as a function of the number of participants, $N_{part}$, for four combinations of $\eta$ ranges used for EP reconstruction and asymmetry calculation.


Measurements of $\phi$ meson production in relativistic heavy-ion collisions at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 064903, 2009.
Inspire Record 797805 DOI 10.17182/hepdata.99047

We present results for the measurement of $\phi$ meson production via its charged kaon decay channel $\phi \to K^+K^-$ in Au+Au collisions at $\sqrt{s_{_{NN}}}=62.4$, 130, 200 GeV, and in p+p and d+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV from the STAR experiment at RHIC. The mid-rapidity ($|y|<0.5$) $\phi$ meson spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the spectra from p+p, d+Au and peripheral Au+Au collisions show power-law tails at intermediate and high transverse momenta ($p_{T}$) and are described better by Levy distributions. The constant $\phi/K^-$ yield ratio vs. beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for $\phi$ production at RHIC. The $\Omega/\phi$ yield ratio as a function of $p_{T}$ is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/c, but disagrees at higher transverse momenta. The measured nuclear modification factor, $R_{dAu}$, for the $\phi$ meson increases above unity at intermediate $p_{T}$, similar to that for pions and protons, while $R_{AA}$ is suppressed due to jet quenching in central Au+Au collisions. Number of constituent quark scaling of both $R_{cp}$ and $v_{2}$ for the $\phi$ meson with respect to other hadrons in Au+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV at intermediate $p_{T}$ is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate $p_{T}$ region at RHIC.

10 data tables match query

Top panel: Energy dependence of the ratio $\phi/\pi^{-}$ in A + A (full points) and p + p (open points) collisions. Stars are data from the STARexperiment at RHIC.Bottom panel: $N_{part}$ dependence of ratio $\phi/\pi^{-}$ in different collision systems. Systematic errors are included for the STAR data points.

Top panel: Energy dependence of the ratio $\phi/\pi^{-}$ in A + A (full points) and p + p (open points) collisions. Stars are data from the STARexperiment at RHIC.Bottom panel: $N_{part}$ dependence of ratio $\phi/\pi^{-}$ in different collision systems. Systematic errors are included for the STAR data points.

Top panel: Energy dependence of the ratio $\phi/\pi^{-}$ in A + A (full points) and p + p (open points) collisions. Stars are data from the STARexperiment at RHIC.Bottom panel: $N_{part}$ dependence of ratio $\phi/\pi^{-}$ in different collision systems. Systematic errors are included for the STAR data points.

More…

Hadronic resonance production in $d$+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 78 (2008) 044906, 2008.
Inspire Record 776722 DOI 10.17182/hepdata.97116

We present the first measurements of the $\rho(770)^0$, $K^*$(892), $\Delta$(1232)$^{++}$, $\Sigma$(1385), and $\Lambda$(1520) resonances in $d$+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV, reconstructed via their hadronic decay channels using the STAR detector at RHIC. The masses and widths of these resonances are studied as a function of transverse momentum ($p_T$). We observe that the resonance spectra follow a generalized scaling law with the transverse mass ($m_T$). The $<p_T>$ of resonances in minimum bias collisions is compared to the $<p_T>$ of $\pi$, $K$, and $\bar{p}$. The $\rho^0/\pi^-$, $K^*/K^-$, $\Delta^{++}/p$, $\Sigma(1385)/\Lambda$, and $\Lambda(1520)/\Lambda$ ratios in $d$+Au collisions are compared to the measurements in minimum bias $p+p$ interactions, where we observe that both measurements are comparable. The nuclear modification factors ($R_{dAu}$) of the $\rho^0$, $K^*$, and $\Sigma^*$ scale with the number of binary collisions ($N_{bin}$) for $p_T >$ 1.2 GeV/$c$.

10 data tables match query

(Delta++ + Delta--bar)/2 invariant yields as a function of pT at |y| < 0.5 for minimum bias d+Au collisions.

(Delta++ + Delta--bar)/2 invariant yields as a function of pT at |y| < 0.5 for d+Au collisions at 0-20% centrality.

(Delta++ + Delta--bar)/2 invariant yields as a function of pT at |y| < 0.5 for d+Au collisions at 20-40% centrality.

More…

Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at $\sqrt{s_{NN}}=200$ GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Chin.Phys.C 45 (2021) 044002, 2021.
Inspire Record 872067 DOI 10.17182/hepdata.102351

Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_s=|\phi_t-\psi_{\rm EP}|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $p_T$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with $\phi_s$, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity $\Delta\eta$ correlation) appears to drop with increasing $\phi_s$ while the jet-like component remains approximately constant. The correlation functions are further studied with subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the $\phi_s$-dependence of the ridge or the away-side double-peak structure. ...

1 data table match query

flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2


Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 673 (2009) 183-191, 2009.
Inspire Record 800796 DOI 10.17182/hepdata.101351

We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|&lt;0.5) for 0.4 &lt; pT &lt; 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.

8 data tables match query

Midrapidity $(|y| < 0.5)$ transverse momentum spectra of $\phi$ mesons for various collision centrality classes for $Cu+Cu$ collisions at $\sqrt{s_{NN}}=62.4$ and 200 GeV. To study the system size dependence, comparison of $40-50\%$ $Au+Au$ spectra to $10-20\%$ $Cu+Cu$ spectra at 200 GeV, and $40-60\%$ $Au+Au$ spectra to $20-30\%$ $Cu+Cu$ spectra at 62.4 GeV are shown. These centralities for the two colliding systems have similar $\langle N_{\scriptsize{\mbox{part}}}\rangle$ values as outlined in Table 2. The errors represent the statistical and systematic errors added in quadrature. They are found to be within the symbol size. The spectra are fitted to a Levy function discussed in the text.

Midrapidity $(|y| < 0.5)$ transverse momentum spectra of $\phi$ mesons for various collision centrality classes for $Cu+Cu$ collisions at $\sqrt{s_{NN}}=62.4$ and 200 GeV. To study the system size dependence, comparison of $40-50\%$ $Au+Au$ spectra to $10-20\%$ $Cu+Cu$ spectra at 200 GeV, and $40-60\%$ $Au+Au$ spectra to $20-30\%$ $Cu+Cu$ spectra at 62.4 GeV are shown. These centralities for the two colliding systems have similar $\langle N_{\scriptsize{\mbox{part}}}\rangle$ values as outlined in Table 2. The errors represent the statistical and systematic errors added in quadrature. They are found to be within the symbol size. The spectra are fitted to a Levy function discussed in the text.

Upper panels. $N_{\scriptsize{\mbox{part}}}$ scaled ($R^{N_{\scriptsize{\mbox{part}}}}_{AA}$) nuclear modification factors as a function of $p_{T}$ of $\phi$ mesons for $0-10\%$ and $20-30\%$ $Cu+Cu$ and $Au+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV. Lower panel. Same as above for $N_{\scriptsize{\mbox{bin}}}$ scaled ($R^{N_{\scriptsize{\mbox{bin}}}}_{AA}$) nuclear modification factor. The error bars represent the statistical and systematic errors added in quadrature. The shaded band in upper panel around 1 at $p_{T}=4.5-5.5$ GeV/$c$ in the right side reflects the uncertainty in $N_{\scriptsize{\mbox{part}}}$ and that on the lower panel for $N_{\scriptsize{\mbox{bin}}}$ calculation for central $Au+Au$ collisions. The respective uncertainties for central $Cu+Cu$ collisions are of similar order.

More…

Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au Collisions from STAR

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 034909, 2009.
Inspire Record 793126 DOI 10.17182/hepdata.104931

Identified charged particle spectra of $\pi^{\pm}$, $K^{\pm}$, $p$ and $\pbar$ at mid-rapidity ($|y|<0.1$) measured by the $\dedx$ method in the STAR-TPC are reported for $pp$ and d+Au collisions at $\snn = 200$ GeV and for Au+Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. ... [Shortened for arXiv list. Full abstract in manuscript.]

6 data tables match query

Energy loss effect for $\pi^{+-}$ (a), $K^{+-}$ (b), and p and pbar (c) at mid-rapidity (|y| < 0.1) as a function of particle momentum magnitude in 200 GeV pp and 62.4 GeV central 0-5% Au+Au collisions. Only negative particles are shown; energy loss for particles and antiparticles are the same. Errors shown are statistical only. The pion energy loss is already corrected by the track reconstruction algorithm.

Energy loss effect for $\pi^{+-}$ (a), $K^{+-}$ (b), and p and pbar (c) at mid-rapidity (|y| < 0.1) as a function of particle momentum magnitude in 200 GeV pp and 62.4 GeV central 0-5% Au+Au collisions. Only negative particles are shown; energy loss for particles and antiparticles are the same. Errors shown are statistical only. The pion energy loss is already corrected by the track reconstruction algorithm.

Energy loss effect for $\pi^{+-}$ (a), $K^{+-}$ (b), and p and pbar (c) at mid-rapidity (|y| < 0.1) as a function of particle momentum magnitude in 200 GeV pp and 62.4 GeV central 0-5% Au+Au collisions. Only negative particles are shown; energy loss for particles and antiparticles are the same. Errors shown are statistical only. The pion energy loss is already corrected by the track reconstruction algorithm.

More…

Version 2
Strange and Multi-strange Particle Production in Au+Au Collisions at $\sqrt{s_{NN}}$ = 62.4 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 83 (2011) 024901, 2011.
Inspire Record 871561 DOI 10.17182/hepdata.96847

We present results on strange and multi-strange particle production in Au+Au collisions at $\sqrt{s_{NN}}=62.4$ GeV as measured with the STAR detector at RHIC. Mid-rapidity transverse momentum spectra and integrated yields of $K^{0}_{S}$, $\Lambda$, $\Xi$, $\Omega$ and their anti-particles are presented for different centrality classes. The particle yields and ratios follow a smooth energy dependence. Chemical freeze-out parameters, temperature, baryon chemical potential and strangeness saturation factor obtained from the particle yields are presented. Intermediate transverse momentum ($p_T$) phenomena are discussed based on the ratio of the measured baryon-to-meson spectra and nuclear modification factor. The centrality dependence of various measurements presented show a similar behavior as seen in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

4 data tables match query

Temperature and baryon chemical potential obtained from thermal model fits as a function of √sNN (see Ref. [22]). The dashed lines correspond to the parametrizations given in Ref. [22]. The solid stars show the result for √sNN=62.4 and 200 GeV.

Temperature and baryon chemical potential obtained from thermal model fits as a function of √sNN (see Ref. [22]). The dashed lines correspond to the parametrizations given in Ref. [22]. The solid stars show the result for √sNN=62.4 and 200 GeV.

Temperature and baryon chemical potential obtained from thermal model fits as a function of √sNN (see Ref. [22]). The dashed lines correspond to the parametrizations given in Ref. [22]. The solid stars show the result for √sNN=62.4 and 200 GeV.

More…

Measurement of D* Mesons in Jets from p+p Collisions at sqrt{s} = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 79 (2009) 112006, 2009.
Inspire Record 810426 DOI 10.17182/hepdata.45861

We report the measurement of charged $D^*$ mesons in inclusive jets produced in proton-proton collisions at a center of mass energy $\sqrt{s}$ = 200 GeV with the STAR experiment at RHIC. For $D^{*}$ mesons with fractional momenta $0.2 < z < 0.5$ in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be $N(D^{*+}+D^{*-})/N(\mathrm{jet}) = 0.015 \pm 0.008 (\mathrm{stat}) \pm 0.007 (\mathrm{sys})$. This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization.

1 data table match query

Production rate of D*+- mesons with fractional longitudinal momenta 0.2<z<0.5 (z = Pl(D*+-)/Ejet, Pl is the momentum projection on the jet axis and Ejet is the total jet energy) in inclusive jets of 11.5 Gev mean transverse energy.