Evidence is presented for an enhancement in the ωππ mass spectrum at the A2 mass region in π+p interactions at 5 GeV/c. Assuming this effect to be the A2, we calculate the decay rate relative to the ρπ decay mode and obtain the results 0.29 ± 0.08 and 0.10 ± 0.04 for the two final states A20Δ++ and A2+p, respectively. Possible explanations of the discrepancy between these numbers are suggested.
No description provided.
We have investigated the ρ-meson production mechanism in the three reactions π±p→ρ±p and π−p→ρ0n at 3.9 GeV/c (s=8.2 GeV2) using the prism-plot technique. Differential cross sections at all momentum transfers are presented. A significant backward peak has been found in all three reactions. The differential cross sections for these backward peaks are given and are compared with the equivalent pion elastic and charge-exchange cross sections in the backward direction. Using a linear combination of the three differential cross sections we have isolated the I=0 exchange contribution in the forward direction. This differential cross section has a zero at −t=0.45 (GeV/c)2 and is fitted by the dual absorptive model of Harari with an interaction radius of ∼ 1.2 F. The total I=0 cross section is calculated and compared with similarly determined cross sections at higher momenta. An analysis of the properties of the other possible spin-parity exchanges is also presented.
SLOPE FITTED OVER 0.05 < -T < 0.3 GEV**2.
No description provided.
No description provided.
From a 98000-photograph exposure of the BNL 80-in. deuterium-filled chamber to a 14.6-GeV/c p¯ beam we have extracted those events that fit the channel p¯n→p¯pπ−. The cross section for this channel is measured to be 730 ± 50 μb. The cross section for the reaction p¯n→Δ¯−−(1238)p is determined to be 130 ± 30 μb. Evidence for target dissociation is presented. A comparison with the reaction π−n→π−pπ− at the same energy indicates agreement with factorization.
No description provided.
The π − p→K 0 λ polarization has been measured at 5 GeV/ c in the range 0<− t <1.4 (GeV/ c ) 2 . The polarization is small for − t ⪅0.4 (GeV/ c ) 2 , becoming negative at the higher values of − t .
No description provided.
Data from p+p→p+X at 102, 205, and 405 GeV and from π−+p→p+X at 205 GeV exhibit an approximate scaling property in the charged-prong multiplicity distributions as a function of the missing mass for the range 5<~MX<~13 GeV.
No description provided.
In a 48 000-picture exposure of the Fermilab 30-inch hydrogen bubble chamber to a 205 GeV/ c π − beam, we have measured 169 events of the reaction, π − p → π − π + π − p, with a cross section of 635 ± 61 μ b. This reaction proceeds almost entirely via low mass π − → 3 π and p → p ππ dissociation. Factorization is satisfied for p → pππ dissociation in πp and pp interactions.
No description provided.
The average charged particle multiplicity, 〈 n ch ( M X 2 )〉, in the reaction K + p→K o X ++ is studied as a function of the mass squared, M X 2 , of the recoil system X and also as a function of the K o transverse momentum, p T , at incident momenta of 5.0, 8.2 and 16.0 GeV/ c . The complete data samples yield distributions which are not independent of c.m. energy squared, s , They exhibit a linear dependence on log ( M X 2 X / M o 2 )[ M o 2 =1 GeV 2 ] with a change in slope occurring for M X 2 ≈ s /2, and do not agree with the corresponding distributions of 〈 n ch 〉 as a function of s for K + p inelastic scattering. Sub-samples of the data for which K o production via beam fragmentation, central production and target fragmentation are expected to be the dominant mechanisms show that, within error, the distribution of 〈 n ch ( M X 2 )〉 versus M X 2 is independent of incident momentum for each sub-sample separately. In particular in the beam fragmentation region the 〈 n ch ( M X 2 )〉 versus M X 2 distribution agrees rather well with that of 〈 n ch 〉 versus s for inelastic K + p interactions. The latter result agrees with recent results on the reactions pp → pX and π − p → pX in the NAL energy range. Evidence is presented for the presence of different production mechanisms in these separate regions.
Two parametrizations are used for fitting of the mean multiplicity of the charged particles : MULT = CONST(C=A) + CONST(C=B)*LOG(M(P=4 5)**2/GEV**2) and MULT = CONST(C=ALPHA)**(M(P=4 5)**2/GEV**2)**POWER.
In a 35 000-picture exposure of the 30-in. hydrogen bubble chamber to a 300-GeV/c proton beam at the Fermi National Accelerator Laboratory, 10054 interactions have been observed. The measured total cross section is $40.68 \pm 0.55$ mb, the elastic cross section is $7.89 \pm 0.52$ mb, and the average charged-particle multiplicity for inelastic events is $8.S0 \pm 0.12$.
QUOTED ERRORS INCLUDE EFFECTS OF CORRECTIONS.
No description provided.
Studies have been made of the reactions π + p→p π + π + π − and π − p→p π + π − π − , both at an incident pion momentum of 18.5 GeV/ c . The two-body (primarily Δ ++ and ϱ o and three-body (low-mass A enhancement, A 3 , N ∗ (1400), and N ∗ (1700)) subsystems are discussed. Cross sections for all significant channels of the reactions are given.
No description provided.
We present the differential cross sections near u=0 for the reactions π−p→K0Λ and π−p→K*0(890)Λ at incident pion momenta of 8 and 10.7 GeV/c. The differential cross section for the first reaction follows the exponential dependence on u previously observed, while the second shows a dip in the backward direction.
Axis error includes +- 25/25 contribution.
Axis error includes +- 25/25 contribution.
Axis error includes +- 25/25 contribution.