An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test
The measured jet broadening distributions (B) in quark and gluon jets seperately.
Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.
The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.
Hadronic Z decay data taken with the ALEPH detector at LEP1 are used to measure the three-jet rate as well as moments of various event-shape variables. The ratios of the observables obtained from b-tagged events and from an inclusive sample are determined. The mass of the b quark is extracted from a fit to the measured ratios using a next-to-leading order prediction including mass effects. Taking the first moment of the y3 distribution, which is the observable with the smallest hadronization corrections and systematic uncertainties, the result is: mb(MZ) = [3.27+-0.22(stat) +-0.22(exp)+-0.38(had)+-0.16(theo)] GeV/c2. The measured ratio is alternatively employed to test the flavour independence of the strong coupling constant for b and light quarks.
No description provided.
Inclusive beauty-quark production in two-photon collisions has been measured at LEP using an integrated luminosity of 698 pb-1 collected by the ALEPH detector with sqrt(s) between 130 and 209 GeV. The b quarks were identified using lifetime information. The cross section is found to be sigma(e+ e- --> e+ e- b \bar{b} X) = (5.4 +/- 0.8 (stat) +/- 0.8 (syst)) pb which is consistent with Next-to-Leading Order QCD.
Cross section for the process E+ E- --> E+ E- BQUARK BQUARKBAR X.
The B<sup loc="post">0</sup> - B̄<sup loc="post">0</sup> average mixing parameter <math altimg="si1.gif"><rm><ovl type="bar" style="s">χ</ovl></rm></math> and b forward-backward asymmetry AFB<sup loc="post">0</sup>(b) are measured from a sample of about 4 200 000 Z → qq̄ events recorded with the ALEPH detector at LEP in the years 1990–1995. High transverse momentum electrons and muons produced in b semileptonic decays provide the tag of the quark flavour and of its charge. The average mixing parameter and the pole b asymmetry are measured to be <math altimg="si1.gif"><rm><ovl type="bar" style="s">χ</ovl></rm></math> = 0.1246 ± 0.0051stat ± 0.0052syst, AFB<sup loc="post">0</sup>(b) = 0.1008 ± 0.0043stat ± 0.0028syst. The value of sin<sup loc="post">2</sup>θw<sup loc="post">eff</sup> = 0.23198 ± 0.00092 is extracted from the asymmetry measurement.
ASYM(N=FB,C=OBSERVED) is observed asymmetry including BQ, CQ and backround.
No description provided.
Quark and gluon jets with the same energy, 24 GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on a track impact parameter method. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity, Evidence is presented which shows that the corresponding differences between gluon and b jets are significantly smaller. In a statistically limited comparison the multiplicity in c jets was found to be comparable with that observed for the jets of mixed quark flavour.
B-jets are identified with the lepton-tag analysis.
The same kinematics as in the table 1.
Deep inelastic electron-photon scattering is studied in the Q**2 range from 1.2 to 30 GeV**2 using the LEP1 data taken with the ALEPH, L3 and OPAL detectors at centre-of-mass energies close to the mass of the Z boson. Distributions of the measured hadronic final state are corrected to the hadron level and compared to the predictions of the HERWIG and PHOJET Monte Carlo models. For large regions in most of the distributions studied the results of the different experiments agree with one another. However, significant differences are found between the data and the models. Therefore the combined LEP data serve as an important input to improve on the Monte Carlo models.
The individual differential cross sections (DSIG/DW) in the low Q**2 regions for the three experiments.. The data are corrected using the HERWIG-kt model.
The combined differential cross sections (DSIG/DW) separately for the low and high Q**2 regions. The data are corrected using the HERWIG-kt model.
The combined differential cross sections (DSIG/DW) separately for the low and high Q**2 regions. The data are corrected using the PHOJET model.
The ZZ production cross section is measured from a data sample corresponding to a total integrated luminosity of 452 pb(-')(1), collected by the ALEPH experiment at LEP at centre-of-mass energies from 192 to 209 GeV. Individual cross sections, ext racted at six centre-of-mass energies, are found to be in agreement with Standard Model calculations. The results are used to set limits on anomalous neutral gauge couplings.
Measured E+ E- --> Z0 Z0 cross sections.
Inclusive γ ∗ γ interactions to hadronic final states where one scattered electron or positron is detected in the electromagnetic calorimeters have been studied in the LEP 1 data taken by ALEPH from 1991 to 1995. The event sample has been used to measure the hadronic structure function of the photon F 2 γ in three bins with 〈 Q 2 〉 of 9.9, 20.7 and 284 GeV 2 .
The measured values of dsig/dx from the ECAL data in the Q**2 bin 35 to 3000 GeV**2 with a mean of 284 +- 49 GeV**2.
The measured values of dsig/dx from the LCAL data in the Q**2 bin 13 to 44 GeV**2 with a mean of 20.67 +- 016 GeV**2.
The measured values of dsig/dx from the LCAL data in the Q**2 bin 6 to 13 GeV**2 with a mean of 9.93 +- 0.04 GeV**2.
The fragmentation of b quarks into B mesons is studied with four million hadronic Z decays collected by the ALEPH experiment during the years 1991-1995. A semi-exclusive reconstruction of B->l nu D(*) decays is performed, by combining lepton candidates with fully reconstructed D(*) mesons while the neutrino energy is estimated from the missing energy of the event. The mean value of xewd, the energy of the weakly-decaying B meson normalised to the beam energy, is found to be mxewd = 0.716 +- 0.006 (stat) +- 0.006 (syst) using a model-independent method; the corresponding value for the energy of the leading B meson is mxel = 0.736 +- 0.006 (stat) +- 0.006 (syst). The reconstructed spectra are compared with different fragmentation models.
Normalized binned spectra for weakly-decaying (WD) leading (L) B-mesons.
The extracted spectra spectra for weakly-decaying (WD) leading (L) B-mesons.
Statistical error matrix for the Weakly Decaying distribution in units of 10**-6.
The polarisation of $\tau$'s produced in Z decay is measured using 160 pb$^{-1}$ of data accumulated at LEP by the ALEPH detector between 1990 and 1995. The variation of the polarisation with polar angle yields the two parameters ${\cal A}_e = 0.1504 \pm 0.0068 $ and ${\cal A}_{\tau} = 0.1451 \pm 0.0059$ which are consistent with the hypothesis of $e$-$\tau$ universality. Assuming universality, the value ${\cal A}_{e{-}\tau} = 0.1474 \pm 0.0045$ is obtained from which the effective weak mixing angle $\sin^2 {\theta_{\mathrm{W}}^{\mathrm{eff}}} =0.23147 \pm 0.00057 $ is derived.
No description provided.