The backward angular distributions obtained in an experiment at the Zero Gradient Synchrotron of Argonne National Laboratory were used to systematically study the energy dependence of the 180° differential cross section for π+p elastic scattering in the center-of-mass energy region from 2159 to 3487 MeV. At each of 38 incident pion momenta between 2.0 and 6.0 GeV/c, a focusing spectrometer and scintillation counter hodoscopes were used to obtain differential cross sections for typically five pion scattering angles from 141° to 173° in the laboratory. Values for dσdΩ at 180° were then obtained by extrapolation. A resonance model and an interference model were used to perform fits to the energy dependence of dσdΩ (180°). Both models led to good fits to our data and yielded values for the masses, widths, parities, and the product of spin and elasticity for the Δ(2200), Δ(2420), Δ(2850), and Δ(3230) resonances. Our data confirm the existence of the Δ(3230) and require the negative-parity Δ(2200).
No description provided.
No description provided.
No description provided.
The differential cross section for π ± p elastic scattering below 2 GeV/ c has been measured at small forward pion angles by an electronics experiment. The interference effects observed between the Coulomb and the nuclear interaction have been used to determine the magnitude and sign of the real parts of the π ± p forward scattering amplitude. The latter are compared to the values predicted by the dispersion relations.
.
.
.
Differential cross sections for the elastic scattering of K + mesons on protons have been measured at 12 lab momenta between 130 and 755 MeV/ c using a hydrogen filled bubble chamber. The results are consistent with a repulsive S-wave nuclear force. A phase-shift analysis yielded the following values of the low-energy parameters: a S 1 2 =(0.309±0.002) fm , r S 1 2 =(0.032±0.02) fm a P 1 2 =(0.021±0.002) fm , a P 3 2 =(0.013±0.001) fm 3
No description provided.
No description provided.
No description provided.
Experimental results are presented for the available channels in the 1.2 GeV/ c π + p interaction. An isobaric model with incoherent addition of the amplitudes is used to determine the π, Δ and N ∗ abundance rates in the π + π o p final state. The multipole parameters in the density matrix of the Δ ++ are determined as functions of its production angle.
No description provided.
LEGENDRE POLYNOMIAL FIT USED TO CORRECT FOR ELASTIC EVENTS LOST FROM THE FORWARD BIN.
No description provided.
The differential cross section has been measured for the reaction γ +p→ π o + p at the Bonn 2.5 GeV electron synchrotron in the energy range from 0.55 to 2.2 GeV at a c.m.angle of 120 degrees.
No description provided.
The preliminary results of measurements of differential cross-sections for the photo-production of neutral pions from protons are given. The data fall in the range 60–125 degrees in pion c.m. angle and 350 to 850 MeV in photon energy.
Axis error includes +- 10/10 contribution (ESTIMATED ERROR DUE TO PRELIMINARY NATURE OF DATA).
Axis error includes +- 10/10 contribution (ESTIMATED ERROR DUE TO PRELIMINARY NATURE OF DATA).
Axis error includes +- 10/10 contribution (ESTIMATED ERROR DUE TO PRELIMINARY NATURE OF DATA).
A study has been made of the individual channels that contribute to the reaction K − p → Λ 0 + neutrals in the K − momentum range from 525 to 820 MeV/ c . Total cross sections are presented for the K − p → Λ 0 η 0 , Σ 0 Σ 0 π 0 , Λ 0 π 0 , Σ 0 π 0 and Σ 0 π 0 π 0 channels and differential cross sections for K − p → Λ 0 π 0 . The data were obtained in a heavy liquid bubble chamber experiment with an average gamma detection efficiency of 70%. Only events with all decay gammas detected were used for analysis. This is the first of a series of papers on this subject and presents the experimental technique in detail.
No description provided.
An investigation has been performed of some properties of Σ(1660) produced in the reaction K−p→Σ+(1660)π− at 2.87 GeV/c incident K− momentum. The decay modes observed for this state include Λ(1405)π and Σπ. The spin and parity are measured to be JP=32−. The differential cross section of the Λ(1405)π decay mode is sharply peaked in the forward direction, falling exponentially with a slope of 5.6 ± 0.7 (GeV/c)−2, while the slope for the Σ0π+ decay mode is 2.1 ± 0.4 (GeV/c)−2. The difference in the ratio of backward to total events for the two decay modes also suggests that two Σ(1660)'s exist.
No description provided.
No description provided.
The energy dependence of backward π+p elastic scattering has been measured for incident π momenta 2.0-6.0 GeV/c in steps of typically 100 MeV/c. Values are presented for both the differential cross section extrapolated to 180° and the slope of the backward peak as a function of momentum. In the s channel we see the effects of the established Δ++ resonances and evidence for the Δ(3230). Also, the data show the existence of a negative-parity Δ resonance with mass ∼2200 MeV/c2.
No description provided.
The π−+p→π0+n differential cross section at 180° has been measured for 52 values of π− momentum from 1.8 to 6.0 GeV/c using a constant-geometry detection system. The average statistical uncertainty is ∼5% and the systematic uncertainty is ∼10%. The details of the experiment and the data analysis are discussed. The data are compared with those of other experiments with which they are generally in agreement. One set of data disagrees with those presented here and a possible reason for this is discussed. A five-parameter fit of the predictions of a dual-resonance model to our data gave excellent agreement. The differential cross sections at 180° for π±p elastic scattering have been compiled and the moduli and relative phase of the T=12 and T=32 pion-nucleon s- and u-channel amplitudes (|A12|, |A32|, and cosδ) have a minimum at u=0.4 GeV/c and, in the s channel, a corresponding minimum at s=2.2 GeV/c.
No description provided.
No description provided.
No description provided.