A measurement of the differential cross sections for a W boson produced in association with jets in the muon decay channel is presented. The measurement is based on 13 TeV proton-proton collision data corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS detector at the LHC. The cross sections are reported as functions of jet multiplicity, jet transverse momentum pT, jet rapidity, the scalar pT sum of the jets, and angular correlations between the muon and the jet for different jet multiplicities. The measured cross sections are in agreement with predictions that include multileg leading-order (LO) and next-to-LO matrix element calculations interfaced with parton showers, as well as a next-to-next-to-LO calculation for the W boson and one jet production.
The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 6.
The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 6.
The differential cross section measurement as a function of the transverse momentum of the first leading jet.
Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 inverse femtobarns. The W bosons are identified through their decay mode W to mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta (HT) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of HT and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-next-to-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+jets background processes in searches for new physics at the LHC.
The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.
The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 7.
The differential cross section measurement as a function of the transverse momentum of the first leading jet.
The differential cross sections for inclusive production of B+ hadrons are measured as a function of the B+ transverse momentum pT[B] and rapidity y[B] in pp collisions at a centre-of-mass energy of 13 TeV, using data collected by the CMS experiment that correspond to an integrated luminosity of 49.4 inverse picobarns. The measurement uses the exclusive decay channel B+ to J/psi K+, with J/psi mesons that decay to a pair of muons. The results show a reasonable agreement with theoretical calculations within the uncertainties.
B+ differential production cross sections DSIG/DPT for |yB|< 1.45 or |yB|< 2.1, at 13 TeV. The calculations from FONLL and PYTHIA are provided. The ratio of the data at 13 TeV to the FONLL predictions and the ratios of the PYTHIA to the FONLL calculations are also given.
B+ differential production cross sections DSIG/DETARAP for 10 < ptB < 100 GeV or 17 < ptB < 100 GeV, at 13 TeV. The calculations from FONLL and PYTHIA are provided. The ratio of the data at 13 TeV to the FONLL predictions and the ratios of the PYTHIA to the FONLL calculations are also given.
Ratios of B+ differential production cross sections at 13 TeV and at 7 TeV as a function of ptB for |yB|< 1.45 or |yB|< 2.1. The calculations from FONLL and PYTHIA are provided as well.
The $f_1(1285)$ meson with mass $1281.0 \pm 0.8$ MeV/$c^2$ and width $18.4 \pm 1.4$ MeV (FWHM) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the $\eta\pi^{+}\pi^{-}$, $K^+\bar{K}^0\pi^-$, and $K^-K^0\pi^+$ decay channels from threshold up to a center-of-mass energy of 2.8 GeV. The mass, width, and an amplitude analysis of the $\eta\pi^{+}\pi^{-}$ final-state Dalitz distribution are consistent with the axial-vector $J^P=1^+$ $f_1(1285)$ identity, rather than the pseudoscalar $0^-$ $\eta(1295)$. The production mechanism is more consistent with $s$-channel decay of a high-mass $N^*$ state, and not with $t$-channel meson exchange. Decays to $\eta\pi\pi$ go dominantly via the intermediate $a_0^\pm(980)\pi^\mp$ states, with the branching ratio $\Gamma(a_0\pi \text{ (no} \bar{K} K\text{)}) / \Gamma(\eta\pi\pi \text{(all)}) = 0.74\pm0.09$. The branching ratios $\Gamma(K \bar{K} \pi)/\Gamma(\eta\pi\pi) = 0.216\pm0.033$ and $\Gamma(\gamma\rho^0)/\Gamma(\eta\pi\pi) = 0.047\pm0.018$ were also obtained. The first is in agreement with previous data for the $f_1(1285)$, while the latter is lower than the world average.
Differential cross section for $\gamma p \to f_1(1285) p \to \eta \pi^+ \pi^- p$ in nanobarns/steradian. The point-to-point uncertainties are given in separate statistical and systematic contributions.
A first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in t-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 inverse-femtobarns. A high-purity sample of t-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. A differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution is used to extract a top quark spin asymmetry of 0.26 +/- 0.03 (stat) +/- 0.10 (syst), which is compatible with a p-value of 4.6% with the standard model prediction of 0.44.
The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top quark.
The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top antiquark.
The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top quark and antiquark.
Jet multiplicity distributions in top quark pair (t t-bar) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurement is performed in the dilepton decay channels (e+ e-, mu+ mu-, and e+/- mu-/+). The absolute and normalized differential cross sections for t t-bar production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential t t-bar b and t t-bar b b-bar cross sections are presented for the first time as a function of the kinematic properties of the leading additional b jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.
Absolute differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 30GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.
Normalized differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 30GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.
Absolute differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 60GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.
A new high precision measurement of the reaction pp -> pK+Lambda at a beam momentum of 2.95 GeV/c with more than 200,000 analyzed events allows a detailed analysis of differential observables and their inter-dependencies. Correlations of the angular distributions with momenta are examined. The invariant mass distributions are compared for different regions in the Dalitz plots. The cusp structure at the N Sigma threshold is described with the Flatt\'e formalism and its variation in the Dalitz plot is analyzed.
No description provided.
No description provided.
No description provided.
The coherent elastic reaction K + d → K + d and the break-up reaction K + d → K + pn are studied in a K + d experiment at 4.6 GeV/ c which the CERN 2 m bubble chamber. Partial and differential cross sections are given and the slopes of the differential cross sections are determined. The results for the reaction K + d → K + p(n s ), where n s denotes the spectator neutron, are compared with those of the reaction K + p → K + p on free protons. Combining our data with existing data on the reactions K + d → K 0 pp and K + p → K + p, parameters of the elastic K + -nucleon scattering at 4.6 GeV/ c are determined in the framework of the Glauber model. The D-wave of the deuteron and spin-flip effects are taken into account.
No description provided.
No description provided.
No description provided.
The differential cross sections for the n+d elastic scattering and for the 2H(n,np)n break-up reaction in the np quasi-free scattering configuration was measured at 67 MeV. The experimental data are compared with results of the calculations based on a rigorous solution of the three-nucleon Faddeev equations using meson-exchange potentials. Good agreement is found between experiment and theory for the n+d elastic-scattering cross section while in the case of np quasi-free scattering the theoretical predictions overestimate the data at neutron angles larger than 40° by about 30%.
No description provided.
CROSS SECTION FOR THE N P QUASI-FREE SCATTERING CONFIGURATION.
CROSS SECTION FOR THE N P QUASI-FREE SCATTERING CONFIGURATION.
The differential cross-section of the reaction γ + p → p + π 0 was measured at the Deutsches Elektronen-Synchrotron, Hamburg, at mean photon energies of 4.0, 5.0 and 5.8 GeV and pion center of mass angles between 0° and 60°. The results are compared wiht theoretical calculations based on Reggeized vector meson exchange.
Axis error includes +- 7/7 contribution.
Axis error includes +- 7/7 contribution.
Axis error includes +- 7/7 contribution.