Observation of the antimatter helium-4 nucleus

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Nature 473 (2011) 353, 2011.
Inspire Record 893021 DOI 10.17182/hepdata.58495

High-energy nuclear collisions create an energy density similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high energy accelerator of heavy nuclei is an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ($^4\bar{He}$), also known as the anti-{\alpha} ($\bar{\alpha}$), consists of two antiprotons and two antineutrons (baryon number B=-4). It has not been observed previously, although the {\alpha} particle was identified a century ago by Rutherford and is present in cosmic radiation at the 10% level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by about 1000 with each additional antinucleon. We present the observation of the antimatter helium-4 nucleus, the heaviest observed antinucleus. In total 18 $^4\bar{He}$ counts were detected at the STAR experiment at RHIC in 10$^9$ recorded Au+Au collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, which has implications beyond nuclear physics.

1 data table

Differential invariant yields of (anti)baryons evaluated at pT/B =0.875 GeV/c, in central 200 GeV Au+Au collisions.


Measurements of light nuclei production in 11.5-A-GeV/c Au + Pb heavy-ion collisions.

The E864 collaboration Armstrong, T.A. ; Barish, K.N. ; Batsouli, S. ; et al.
Phys.Rev.C 61 (2000) 064908, 2000.
Inspire Record 525664 DOI 10.17182/hepdata.25465

We report on measurements by the E864 experiment at the BNL-AGS of the yields of light nuclei in collisions of Au(197) with beam momentum of 11.5 A GeV/c on targets of Pb(208) and Pt(197). The yields are reported for nuclei with baryon number A=1 up to A=7, and typically cover a rapidity range from y(cm) to y(cm)+1 and a transverse momentum range of approximately 0.1 < p(T)/A < 0.5 GeV/c. We calculate coalescence scale factors B(A) from which we extract model dependent source dimensions and collective flow velocities. We also examine the dependences of the yields on baryon number, spin, and isospin of the produced nuclei.

14 data tables

10 pct most central collisions.

10 to 38 pct most central collisions.

38 to 66 pct most central collisions.

More…

Measurements of neutrons in 11.5-A-GeV/c Au + Pb heavy-ion collisions.

The E864 collaboration Armstrong, T.A. ; Barish, K.N. ; Batsouli, S. ; et al.
Phys.Rev.C 60 (1999) 064903, 1999.
Inspire Record 506495 DOI 10.17182/hepdata.31358

We present measurements from Brookhaven Experiment 864 of neutron invariant multiplicity in 11.5 A GeV/c Au+Pb collisions. The measurements span a rapidity range from center-of-mass to beam rapidity (y(beam)=3.2) and are presented as a function of event centrality. The results are compared with E864 measurements of proton invariant multiplicity and an average n/p ratio at hadronic freeze-out of 1.19+-.08 is determined for the rapidity range y=1.6 to y=2.4. We discuss briefly the implications of this ratio within a simple equilibrium model of the collision system.

1 data table

The errors are statistical and systematic errors added in quadrature. 10% most central events.


Antiproton production and antideuteron production limits in relativistic heavy ion collisions from BNL experiment 864.

The E864 collaboration Armstrong, T.A. ; Barish, K.N. ; Batsoulli, S. ; et al.
Phys.Rev.C 59 (1999) 2699-2712, 1999.
Inspire Record 478873 DOI 10.17182/hepdata.31371

We present results from Experiment 864 for antiproton production and antideuteron limits in Au + Pb collisions at 11.5 GeV/c per nucleon. We have measured invariant multiplicities for antiprotons for rapidities 1.4&lt;y&lt;2.4 at low transverse momentum as a function of collision geometry. When compared with the results from Experiment 878 our measurements suggest a significant contribution to the measured antiproton yield from the decay of strange antibaryons. We have also searched for antideuterons and see no statistically significant signal. Thus, we set upper limits on the production at approximately 3 x 10^{-7} per 10% highest multiplicity Au + Pb interaction.

7 data tables

CENTRALITY = 10 PCT.

CENTRALITY = 100 TO 70 PCT.

CENTRALITY = 70 TO 30 PCT.

More…