Date

Reaction K- n --> Lambda0 pi- from 1550-MeV to 1650-MeV

Morris, W.A. ; Albright, John R. ; Colleraine, A.P. ; et al.
Phys.Rev.D 17 (1978) 55-61, 1978.
Inspire Record 134419 DOI 10.17182/hepdata.24402

This paper presents the results of a study of the reaction K−d→(ps)Λ0π−. The cross section for the process K−n→Λ0π− has been measured as a function of the center-of-mass energy in the range from 1550 to 1650 MeV. An energy-dependent partial-wave analysis was performed for this reaction, and two acceptable solutions were found. The first solution indicated no resonant structure in this energy range below the Σ(1670). The second solution indicated resonant structure in the S11 partial wave with ER=1600±6 MeV/c2, Γ(ER)=87±19 MeV/c2, and x=0.12±0.02.

2 data tables

No description provided.

No description provided.


K- n Elastic Scattering Between 610-MeV/c and 840-MeV/c

Damerell, C.J.S. ; Hotchkiss, M.J. ; Wickens, F. ; et al.
Nucl.Phys.B 129 (1977) 397-414, 1977.
Inspire Record 126184 DOI 10.17182/hepdata.35225

Elastik K − n ( I = 1) differential cross sections have been measured at 14 momenta between 610 and 940 MeV/ c , over the c.m. angular range −0.7 < cos θ ∗ < 0.8 . The results, which cover the c.m. energy range 1610–1765 MeV, have been fitted with Legendre polynomials and compared with some existing predictions from a partial-wave analysis.

6 data tables

No description provided.

No description provided.

SEMI-INCLUSIVE CROSS SECTION.

More…

Measurement of K- p Elastic Differential Cross-Sections Between 610-MeV/c and 943-MeV/c

Adams, C.J. ; Davies, J.D. ; Dowell, J.D. ; et al.
Nucl.Phys.B 96 (1975) 54-66, 1975.
Inspire Record 2402 DOI 10.17182/hepdata.31930

Measurements of K − p elastic scattering have been carried out at 14 momenta between 610 MeV/ c and 943 MeV/ c over the angular range −0.9 < cos θ < 0.9. The results agree well with the best existing data and have significantly smaller errors.

4 data tables

No description provided.

DIFFERENTIAL CROSS SECTION AT 0 DEG CALCULATED FROM DISPERSION RELATIONS AND AT 180 DEG INTERPOLATED FROM BUBBLE CHAMBER MEASUREMENTS.

LEGENDRE POLYNOMIAL FIT, INCLUDING FORWARD AND BACKWARD POINTS.

More…

K+ n Elastic and Charge Exchange Scattering Between 430-MeV/c and 940-MeV/c

Damerell, C.J.S. ; Hotchkiss, M.J. ; Wickens, F. ; et al.
Nucl.Phys.B 94 (1975) 374-412, 1975.
Inspire Record 98726 DOI 10.17182/hepdata.31976

Elastic and charge-exchange K + n differential cross sections have been measured from K + d interactions from 430 to 940 MeV/ c using spark chambers and scintillation counters. The data have been compared with existing results and in an accompanying paper have been included with other measurements in a phase-shift analysis.

4 data tables

DEUTERIUM TARGET.

NOTE COHERENT ELASTIC SCATTERING ON DEUTERIUM AT FORWARD ANGLES (-T < 0.13 GEV**2) REDUCES THE CROSS SECTION COMPARED WITH FREE NUCLEON ELASTIC SCATTERING.

NOTE COHERENT ELASTIC SCATTERING ON DEUTERIUM AT FORWARD ANGLES (-T < 0.13 GEV**2) REDUCES THE CROSS SECTION COMPARED WITH FREE NUCLEON ELASTIC SCATTERING.

More…

The n n scattering amplitude at 845 mev/c

Dutton, L.M.C. ; Howells, R.J.W. ; Jafar, J.D. ; et al.
Nucl.Phys.B 78 (1974) 484-492, 1974.
Inspire Record 94570 DOI 10.17182/hepdata.32243

Experimental data on dd small-angle elastic scattering in the Coulomb interference region are analysed to yield the dd scattering amplitude. This amplitude is then expressed in terms of the nucleon-nucleon scattering amplitudes and the Glauber correction. The value for the nn scattering amplitude found is shown to be in good agreement with the pp amplitude.

1 data table

No description provided.


K+ p elastic scattering between 432 and 939 mev/c and phase shift analysis

Adams, C.J. ; Cox, G.F. ; Davies, J.D. ; et al.
Nucl.Phys.B 66 (1973) 36-77, 1973.
Inspire Record 94900 DOI 10.17182/hepdata.32390

Measurements of K + p elastic scattering have been carried out at 13 momenta between 432 MeV/ c and 939 MeV/ c using spark chambers. The data establish unambiguously the constructive interference of the Coulomb and nuclear amplitudes at 432 MeV/ c . The elastic cross section is found to be independent of momentum through the range covered. The phase shifts for S, P, D and F waves are obtained in an energy dependent analysis in which higher waves are held at theoretical values. The initial behaviour ofthe P, D and F amplitudes is quite close to that predicted by the calculation of the peripheral partial waves. Only the P3 and D5 amplitudes become strikingly different with increasing momentum.

14 data tables

COULOMB INTERFERENCE EFFECT SEEN AT SMALL ANGLES.

No description provided.

No description provided.

More…

K+ p elastic scattering between 432 and 939 mev/c

Adams, C.J. ; Davies, J.D. ; Dowell, J.D. ; et al.
Phys.Rev.D 4 (1971) 2637-2641, 1971.
Inspire Record 74758 DOI 10.17182/hepdata.23177

We present data from a spark-chamber study of K+p elastic scattering between 432 and 939 MeV/c, over the range −0.6<cosθc.m.<+0.7. With measurements at 13 momenta, and between 2000 events at the lowest momentum and 5000 events at the highest momentum, there is a major improvement over previous data. The elastic cross sections deduced from the differential cross sections are almost independent of momentum through the range covered. The data are inconsistent with counter measurements of the total cross section which suggest a sharp shoulder in the cross section at about 700 MeV/c.

15 data tables

No description provided.

No description provided.

No description provided.

More…

Pi-minus p elastic scattering at 2.26 gev/c

Reynolds, B.G. ; Kimel, J.D. ; Albright, John R. ; et al.
Phys.Rev. 173 (1968) 1403-1411, 1968.
Inspire Record 55955 DOI 10.17182/hepdata.26498

The elastic scattering of negative pions on protons at 2.26 GeVc has been studied using the Lawrence Radiation Laboratory 72-in. hydrogen-filled bubble chamber. The elastic scattering cross section is found to be 8.91±0.24 mb. The forward diffraction peak is well fitted by an exponential in the square of the four-momentum transfer, and the slope is found to be 8.8±0.1 GeV−2. The differential cross section is parametrized in terms of three models: optical, strong-absorption, and two-slope. It is found that the two-slope model affords the best description of the data and also does very well in predicting the polarization data of other experiments. The best-fit parameters for all three models are given. In addition, the amplitudes associated with the best fits are given for the strong-absorption and the two-slope models.

1 data table

No description provided.