Using the CLEO-c detector at the Cornell Electron Storage Ring, we have measured inclusive and exclusive cross sections for the production of D+, D0 and Ds+ mesons in e+e- annihilations at thirteen center-of-mass energies between 3.97 and 4.26 GeV. Exclusive cross sections are presented for final states consisting of two charm mesons (DD, D*D, D*D*, Ds+Ds-, Ds*+Ds-, and Ds*+Ds*-) and for processes in which the charm-meson pair is accompanied by a pion. No enhancement in any final state is observed at the energy of the Y(4260).
Exclusive cross section for two body neutral non-strange charm mesons.
Exclusive cross section for two body charged non-strange charm mesons.
Exclusive cross section for two body strange charm mesons.
Using the CLEO III detector, we measure absolute cross sections for e+e- --> hadrons at seven center-of-mass energies between 6.964 and 10.538 GeV. The values of R, the ratio of hadronic and muon pair production cross sections, are determined within 2% total r.m.s. uncertainty.
Measured values of R as a function of CM energy. The first DSYS error is the correlated uncertainty and the second is the uncorrelated.
We have updated our measurement of the cross section for e^+e^- -> psi(3770) -> hadrons, our publication "Measurement of sigma(e^+e^- -> psi(3770) -> hadrons) at E_{c.m.} = 3773 MeV", arXiv:hep-ex/0512038, Phys.Rev.Lett.96, 092002 (2006). Simultaneous with this arXiv update, we have published an erratum in Phys.Rev.Lett.104, 159901 (2010). There, and in this update, we have corrected a mistake in the computation of the error on the difference of the cross sections for e^+e^- -> psi(3770) -> hadrons and e^+e^- -> psi(3770) -> DDbar. We have also used a more recent CLEO measurement of cross section for e^+e^- -> psi(3770) -> DDbar. From this, we obtain an upper limit on the branching fraction for psi(3770) -> non-DDbar of 9% at 90% confidence level.
Measured cross section for the process E+ E- --> PSI(3770) --> hadrons.
The ratio R of the total cross section for e+e− annihilation into hadrons to the lowest-order QED cross section for e+e−→μ+μ− has been measured for center-of-mass energies ranging from 50 to 61.4 GeV. If we allow for an overall shift of —4.9%, about 1.5 times our estimated normalization error, the results are consistent with the standard-model predictions.
Error quoted contains point-to-point systematics. There is also an additional 3.2 pct systematic error.
We report on a measurement of the mass of the Z 0 boson, its total width, and its partial decay widths into hadrons and leptons. On the basis of 25 801 hadronic decays and 1999 decays into electrons, muons or taus, selected over eleven energy points between 88.28 GeV and 95.04 GeV, we obtain from a combined fit to hadrons and leptons a mass of M z =91.154±0.021 (exp)±0.030 (LEP) GeV, and a total width of Γ z =2.536±0.045 GeV. The errors on M z have been separated into the experimental error and the uncertainty due to the LEP beam energy. The measured leptonic partial widths are Γ ee =81.2±2.6 MeV, Γ μμ =82.6± 5.8 MeV, and Γ ττ =85.7±7.1 MeV, consistent with lepton universality. From a fit assuming lepton universality we obtain Γ ℓ + ℓ − = 81.9±2.0 MeV. The hadronic partial width is Γ had =1838±46 MeV. From the measured total and partial widths a model independent value for the invisible width is calculated to be Γ inv =453±44 MeV. The errors quoted include both the statistical and the systematic uncertainties.
Errors are statistical and point to point systematic luminosity error of 1 pct.
Measured values of e+ e- --> e+ e- cross section.
Corrected cross section. Corrections are for t-channel effects and loss of acollinear events near the boundary of the acceptance.
Relative production rates of multijet hadronic final states of Z 0 boson decays, observed in e + e − annihilation around 91 GeV centre of mass energy, are presented. The data can be well described by analytic O( α s 2 ) QCD calculations and by QCD shower model calaculations with parameters as determined at lower energies. A first judgement of Λ MS and of the renormalization scale μ 2 in O( α s 2 ) QCD results in values similar to those obtained in the continuum of e + e − annihilations. Significant scaling violations are observed when the 3-jet fractions are compared to the corresponding results from smaller centre of mass energies. They can be interpreted as being entirely due tot the energy dependence of α s , as proposed by the nonabelian nature of QCD, The possibility of an energy independent coupling constant can be excluded with a significance of 5.7 standard deviations.
Data are corrected for final acceptance and resolution of the detector. No explicit corrections for hadronisation effects are applied.
We report an experimental determination of the cross section for e + e − → hadrons from a scan around the Z 0 pole. On the basis of 4350 hadronic events collected over seven energy points between 89.26 GeV and 93.26 GeV we obtain a mass of m z =91.01±0.05±0.05 GeV, and a total decay width of Γ z =2.60±0.13 GeV. In the context of the standard model t these results imply 3.1 ± 0.4 neutrino generations.
No description provided.
Using 123 multihadronic inclusive muon-production e+e− annihilation events at an average c.m. energy of 55.2 GeV, we extracted the forward-backward charge asymmetry of the e+e−→bb¯ process and the R ratio for bb¯ production. We used an analysis method in which the behavior of the c quark and lighter quarks is assumed, with only that of the b quark left indeterminate. The results, Ab=-0.72±0.28(stat)±0.13(syst) and Rb=0.57±0.16±0.10, are consistent with the standard model.
Asymmetry in BOTTOM quark production.
Ratio of BOTTOM quark production to total hadron cross section (R value).
The total cross section for e + e − annihilation into hadrons has been measured for CM energies ranging from 50 to 57 GeV. We fit the predictions of the standard model to these measurements and those at lower energies. The mass of the Z 0 boson, M Z , and the QCD scale parameter, Λ MS , are derived from the fit. The results are M Z =88.6 −1.8 +2.0 GeV/ c 2 , and Λ MS =0.15 −0.11 +0.16 GeV .
No description provided.
The ratio R of the cross section for e+e− annihilation into hadronic final states to the QED cross section for muon-pair production is measured to be 4.34±0.45±0.30 and 4.23±0.20±0.21 at c.m. energies of 50 and 52 GeV, respectively. From these values of R and an analysis of the event shapes we deduce a 95%-confidence-level upper limit for the production rate of new heavy charge +23e or −13e quarks to be 0.19 units of R.
No description provided.