Comparison of Three Jet and Two Jet Cross-Sections in p anti-p Collisions at the CERN SPS p anti-p Collider

The UA1 collaboration Arnison, G. ; Allkofer, O.C. ; Astbury, A. ; et al.
Phys.Lett.B 158 (1985) 494, 1985.
Inspire Record 214736 DOI 10.17182/hepdata.30390

Results are presented on two-jet and three-jet cross sections, measured in the UA1 experiment at the CERN Super Proton Synchrotron (SPS) pp̄ Collider, at the highest available subprocess cms energies ( s ̂ >150 GeV ). Precise measurements of the two-jet angular distribution are consistent with previous results but show significant scale-breaking effects. The three-jet Dalitz plot and the three-jet angular distributions show evidence for final- and initial-state bremsstrahlung processes, in agreement with the leading-order QCD predictions. A comparison of the yield of wide-angle three-jet events with the yield of two-jet events at smaller scattering angles gives for the strong interaction coupling constant: α s ( K 3J K 2J )=0.16±0.02±0.03 at Q 2 ≈4000 GeV 2 , where the factor K 3J K 2J may plausibly be assumed to be close to unity.

2 data tables

No description provided.

No description provided.


INCLUSIVE JET PRODUCTION AT S**(1/2) = 546-GeV

The UA1 collaboration Arnison, G. ; Allkofer, O.C. ; Astbury, A. ; et al.
CERN-EP-85-116, 1985.
Inspire Record 216597 DOI 10.17182/hepdata.50065

None

1 data table

No description provided.


Elliptic flow in Au + Au collisions at s(N N)**(1/2) = 130-GeV.

The STAR collaboration Ackermann, K.H. ; Adams, N. ; Adler, C. ; et al.
Phys.Rev.Lett. 86 (2001) 402-407, 2001.
Inspire Record 533414 DOI 10.17182/hepdata.93232

Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.

2 data tables

Elliptic flow as a function of centrality defined as nch/nmax. Also given is epsilon, the initial space eccentricity of the overlap region, as well as the cumulative fraction of events starting with the most central. From the results of the study of non-flow contributions by different subevent selections and the maximum magnitudes of the first and higher-order harmonics, we estimate a systematic error for v2 of about 0.007, with somewhat smaller uncertainty for the mid-centralities where the resolution of the event plane is high.

Elliptic flow as a function of transverse momen-tum for minimum bias events


Centrality dependence of charged particle multiplicity in Au Au collisions at s(N N)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 86 (2001) 3500-3505, 2001.
Inspire Record 539140 DOI 10.17182/hepdata.50270

We present results for the charged-particle multiplicity distribution at mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the PHENIX detector at RHIC. For the 5% most central collisions we find $dN_{ch}/d\eta_{|\eta=0} = 622 \pm 1 (stat) \pm 41 (syst)$. The results, analyzed as a function of centrality, show a steady rise of the particle density per participating nucleon with centrality.

1 data table

130 GeV is sqrt(S) per nucleon-nucleon collision. N(C=N_NUCLEONS) and N(C=N_COLLISONS) are the number of participating nucleons and binary collisions. The statistical errors are negligible and only systematic errors are quoted. COL(NAME=CENTRALITY) is centrality.


Measurement of the mid-rapidity transverse energy distribution from s(N N)**(1/2) = 130-GeV Au + Au collisions at RHIC.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 87 (2001) 052301, 2001.
Inspire Record 555603 DOI 10.17182/hepdata.31419

The first measurement of energy produced transverse to the beam direction at RHIC is presented. The mid-rapidity transverse energy density per participating nucleon rises steadily with the number of participants, closely paralleling the rise in charged-particle density, such that E_T / N_ch remains relatively constant as a function of centrality. The energy density calculated via Bjorken's prescription for the 2% most central Au+Au collisions at sqrt(s_NN)=130 GeV is at least epsilon_Bj = 4.6 GeV/fm^3 which is a factor of 1.6 larger than found at sqrt(s_NN)=17.2 GeV (Pb+Pb at CERN).

1 data table

130 GeV is sqrt(S) per nucleon-nucleon collision. The statistical errors are negligible and only systematic errors are quoted. COL(NAME=CENTRALITY) is centrality.


Mid-rapidity anti-proton to proton ratio from Au + Au collisions at s(N N)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 86 (2001) 4778, 2001.
Inspire Record 555818 DOI 10.17182/hepdata.98921

We report results on the ratio of mid-rapidity anti-proton to proton yields in Au+Au collisions at $\rts = 130$ GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of $|y|<0.5$ and 0.4 $<p_t<$ 1.0 GeV/$c$, the ratio is essentially independent of either transverse momentum or rapidity, with an average of $0.65\pm 0.01_{\rm (stat.)} \pm 0.07_{\rm (syst.)}$ for minimum bias collisions. Within errors, no strong centrality dependence is observed. The results indicate that at this RHIC energy, although the $p$-$\pb$ pair production becomes important at mid-rapidity, a significant excess of baryons over anti-baryons is still present.

4 data tables

pbar over p ratio vs. pt

pbar over p ratio vs. rapidity (y)

pbar over p ratio vs. centrality $(n_{ch}/n_{max})$

More…

Rapidity dependence of antiproton to proton ratios in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 87 (2001) 112305, 2001.
Inspire Record 558361 DOI 10.17182/hepdata.110347

Measurements, with the BRAHMS detector, of the antiproton to proton ratio at central and forward rapidities are presented for Au+Au reactions at sqrt{s_{NN}}=130 GeV, and for three different collision centralities. For collisions in the 0-40% centrality range we find $N(\bar{{\rm p}})/N({\rm p}) = 0.64 +- 0.04 (stat.) +- 0.06 (syst.) at y ~0, 0.66 +- 0.03 +- 0.06 at y ~ 0.7, and 0.41 +- 0.04 +- 0.06 at y ~ 2. The ratios are found to be nearly independent of collision centrality and transverse momentum. The measurements demonstrate that the antiproton and proton rapidity densities vary differently with rapidity, and indicate that a net-baryon free midrapidity plateau (Bjorken limit) is not reached at this RHIC energy.

6 data tables

$\overline{\mathrm{p}}/\mathrm{p}$ versus $\mathrm{Centrality}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

More…

Multiplicity distribution and spectra of negatively charged hadrons in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 112303, 2001.
Inspire Record 557767 DOI 10.17182/hepdata.99049

The minimum bias multiplicity distribution and the transverse momentum and pseudorapidity distributions for central collisions have been measured for negative hadrons (h-) in Au+Au interactions at sqrt(s_nn) = 130 GeV. The multiplicity density at midrapidity for the 5% most central interactions is dNh-/deta|_{eta = 0} = 280 +- 1(stat)+- 20(syst), an increase per participant of 38% relative to ppbar collisions at the same energy. The mean transverse momentum is 0.508 +- 0.012 GeV/c and is larger than in central Pb+Pb collisions at lower energies. The scaling of the h- yield per participant is a strong function of pt. The pseudorapidity distribution is almost constant within |eta|<1.

4 data tables

Normalized multiplicity distribution of $h^{−}$ with $p_{T} > 100$ MeV/$c$ at $|\eta| < 0.5$ in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV. Systematic error on the vertical scale is estimated to be $10\%$. The systematic error on the horizontal scale is $6\%$ for the entire range of multiplicity. The shaded area is $5\%$ most central collisions, selected by ZDC coincidence. The solid curve is the prediction from the HIJING model.

$h^{−}$ $p_{T}$-spectra for the $5\%$ most central Au+Au collisions at midrapidity ($|\eta| < 0.1$) for several systems. The correlated systematical error is estimated to be below $6\%$. The curves are power-law fits to the data.

ratio of STAR and scaled UA1 $p_{T}$-distributions. The errors given are the errors of the STAR data only and do not include the systematic errors from the scaling of the UA1 data to $130$ GeV (i.e., the shaded region in Fig.2 lower panel). The STAR data is for the $5\%$ most central collisions.

More…

Identified particle elliptic flow in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 182301, 2001.
Inspire Record 559609 DOI 10.17182/hepdata.93261

We report first results on elliptic flow of identified particles at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV using the STAR TPC at RHIC. The elliptic flow as a function of transverse momentum and centrality differs significantly for particles of different masses. This dependence can be accounted for in hydrodynamic models, indicating that the system created shows a behavior consistent with collective hydrodynamical flow. The fit to the data with a simple model gives information on the temperature and flow velocities at freeze-out.

5 data tables

Differential elliptic flow for pions for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.

Differential elliptic flow for protons + antiprotons for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.

Differential elliptic flow for kaons for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.

More…

Pion interferometry of s(NN)**(1/2) = 130-GeV Au + Au collisions at RHIC.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 082301, 2001.
Inspire Record 559861 DOI 10.17182/hepdata.93264

Two-pion correlation functions in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV have been measured by the STAR (Solenoidal Tracker at RHIC) detector. The source size extracted by fitting the correlations grows with event multiplicity and decreases with transverse momentum. Anomalously large sizes or emission durations, which have been suggested as signals of quark-gluon plasma formation and rehadronization, are not observed. The HBT parameters display a weak energy dependence over a broad range in $\sqrt{s_{NN}}$.

5 data tables

Multiplicity dependence of HBT parameters for low-pT (0.125-0.225 GeV/c) pi- pi- channel. They are Coulomb corrected (5 fm Gaussian source assumed), corrected for merging effects ("bad systematic" for STAR-HBT insiders), and corrected for finite-momentum-resolution effects. Systematic errors are estimated by the size of the merging correction and the effect of varying source size used in the Coulomb correction by +/- 1 fm.

Multiplicity dependence of HBT parameters for low-pT (0.125-0.225 GeV/c) pi+ pi+ channel. They are Coulomb corrected (5 fm Gaussian source assumed), corrected for merging effects ("bad systematic" for STAR-HBT insiders), and corrected for finite-momentum-resolution effects. Systematic errors are estimated by the size of the merging correction and the effect of varying source size used in the Coulomb correction by +/- 1 fm.

mT dependence of HBT parameters for high multiplicity (0-12%) collisions in pi- pi- channel. They are Coulomb corrected (5 fm Gaussian source assumed), corrected for merging effects ("bad systematic" for STAR-HBT insiders), and corrected for finite-momentum-resolution effects. Systematic errors are estimated by the size of the merging correction and the effect of varying source size used in the Coulomb correction by +/- 1 fm.

More…