Three- and four-body final states with strange particles are studied in π + p and π − p interactions at 16 GeV/ c . We present cross sections and investigate their energy dependence. Production mechanism, resonance production and quantum number transfer are discussed. Strong Y ∗ (1385) production is found in the reaction π + p → Λ K + π + , while the corresponding π − p reaction is dominated by production of K ∗ (890). In the NK K π channels, the K and K are produced mainly at the same vertex, i.e. non-strangeness exchange ΔS = 0 is dominant (about 75% of the cases), whereas in the Λ K ππ channels, the Λ and K are more frequently produced at opposite vertices, i.e. | ΔS | = 1 exchange is important (about 60% of the cases). Results on the polarization of the lambdas produced in the π + p reactions are given.
No description provided.
The reactions π + p giving π 0 Δ ++ (1236), η (549) Δ ++ (1236) and η ′(958) Δ ++ (1236) are studied at 16 GeV/ c . Cross sections, differential cross sections and Δ ++ (1236) spin density matrix elements are presented. The π 0 Δ ++ (1236) differential cross section d σ d t′ indicates a dip towards t ′ = 0 and has a minimum at t ′ ≅ 0.6 GeV 2 . The Δ ++ (1236) spin density matrix elements are consistent with the predictions of the Stodolsky-Sakurai model, except perhaps near the forward direction. For ηΔ ++ (1236), the differential cross section d σ d t′ turns over in the forward direction and presents no further structure. SU(3) sum rules are tested and found to be approximately satisfied. The data agree with factorization of ϱ exchange. The effective A 2 trajectory is calculated and found to be consistent with that reported from the reaction π − p → η n.
No description provided.
NORMALIZED TO THE TOTAL CROSS SECTION OF 49 MUB.
No description provided.
The dominant partial waves of the diffractively produced N π system at low Nπ masses (⩽ 1.4 GeV) are determined in the reactions π ± p → π (N π ) at 16 GeV/ c . A satisfactory description of our data can only be obtained by strong contributions of both a 1 2 − S-wave and a 3 2 + P-wave, violating the Gribov-Morrison rule. Spin and parity of the diffractively produced states are found from the interference between diffraction and Δ (1236) production. The interference term is obtained by an isospin analysis.
No description provided.
<NUCLEON PION> MASS DEPENDENCE.
From an experiment done with the CERN Omega spectrometer, triggered by a fast forward proton device, we present results on the differential cross section d σ d u for π − p backward elastic scattering. The d σ d u distribution agrees with an A e Bu law. The compilation of existing results shows a discrepancy between results but the ( d σ d u ) u=0 data fit perfectly an s 2 α 0 −2 dependence, as predicted by a single Δδ Regge trajectory exchange. A search for the reaction π − p → d p , with a fast forward deuteron, which can be produced by a double-baryon exchange mechanism, gives cross-section upper limits of ∼1% of the backward elastic cross section.
UMIN IS 0.0446 GEV**2.
UMIN IS 0.0333 GEV**2.
D(SIG)/DU FITTED FOR 0 < -U < 0.75 GEV**2 TO GIVE SLOPE/INTERCEPT.
We have measured the total cross-section difference for pp scattering in initial spin states parallel to the beam direction at beam momenta of 1.17, 1.47, 1.69, 1.97 and 2.49 GeV/ c . This measurement was done in a standard transmission experiment. A striking energy dependence is observed with a maximum difference of −16.9 mb at P lab = 1.47 GeV/ c .
PRELIMINARY RESULTS.
PRELIMINARY RESULTS.
Inclusive ϱ 0 production in γ p → ϱ 0 + anything is studied at 2.8, 4.7, and 9.3 GeV, using the SLAC linearly polarized backscattered laser photon beam and the 82 inch hydrogen bubble chamber. Over this energy range the inclusive inelastic ϱ 0 cross section rises from 6.0 μb to 20.5 μb. The multiplicity, i.e. the average number of μ 0 mesons per inelastic hadronic event, has an energy dependence consistent with 1n s .
No description provided.
No description provided.
We report the results of a precise measurement of the K−p→K¯∘n cross section between 515 and 1065 MeV/c in steps of 10 MeV/c. The statistical errors are less than 1%, a major improvement in accuracy over previous work. No evidence is found for the new I=1 K¯N resonances at 546 and 602 MeV/c reported recently by Carroll et al.
No description provided.
We present cross sections for coherent and non-coherent production of one, two and three pions in pd reactions at 19 GeV/ c . The mass distributions of the two pion non-coherent channels are studied. Strong single Δ(1236) and also some double Δ production is observed. Clear evidence for ϱ production is seen.
SLOPE FITTED FOR -TP = 0.00 TO 0.14 GEV**2.
A sample of 1200 ϕ mesons produced in the Zweig-rule-forbidden reactions π±N→ϕN shows a flat t distribution (slope=1.7 ± 0.2 GeV−2) and a cross section suppressed by 0.0032±0.0004 relative to π−p→ωn. Natural-parity-exchange ω and ϕ production have similar t dependences, while ω and ϕ production by unnatural-parity exchange differ markedly. Interference between the ϕ and the underlying K¯K S wave indicates substantial nucleon-spin incoherence between the amplitudes for ϕ and S-wave production.
Axis error includes +- 10/10 contribution (RES-DEF(RES=PHI,BACK=CORRECTED)).
Axis error includes +- 10/10 contribution (RES-DEF(RES=PHI,BACK=CORRECTED)).
STATISTICAL ERRORS ONLY.
A study of inclusive Ξ − production from a high statistics K − p experiment at 4.2 GeV/ c has been made. The total Ξ − production cross section is 157 ± 8 μ b. Approximately 15% of the Ξ − arise from decay of the Ξ ∗0 (1530) resonance. The polarization of the Ξ − is found to be negative and is nearly equal in value to that of the Λ 0 from the inclusive reaction K − + p → Λ 0 + anything. An analysis of the inclusive production of Ξ − has been made in the framework of the triple-Reege formalism.
No description provided.
No description provided.