An analysis is presented based on models of the intrinsic transverse momentum (intrinsic $k_\mathrm{T}$) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans three orders of magnitude in center-of-mass energy and two orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic $k_\mathrm{T}$ parameters, independent of the dilepton invariant mass at a given center-of-mass energy.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP5 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP4 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP3 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
Measurements of fiducial and total inclusive cross sections for W and Z boson production are presented in proton-proton collisions at $\sqrt{s}$ = 5.02 and 13 TeV. Electron and muon decay modes ($\ell$ = e or $\mu$) are studied in the data collected with the CMS detector in 2017, in dedicated runs with reduced instantaneous luminosity. The data sets correspond to integrated luminosities of 298 $\pm$ 6 pb$^{-1}$ at 5.02 TeV and 206 $\pm$ 5 pb$^{-1}$ at 13 TeV. Measured values of the products of the total inclusive cross sections and the branching fractions at 5.02 TeV are $\sigma$(pp $\to$ W+X) $\mathcal{B}$(W $\to$$\ell\nu$) = 7300 $\pm$ 10 (stat) $\pm$ 60 (syst) $\pm$ 140 (lumi) pb, and $\sigma$(pp $\to$ Z+X) $\mathcal{B}$(Z $\to$$\ell^+\ell^-$) = 669 $\pm$ 2 (stat) $\pm$ 6 (syst) $\pm$ 13 (lumi) pb for the dilepton invariant mass in the range of 60-120 GeV. The corresponding results at 13 TeV are 20480 $\pm$ 10 (stat) $\pm$ 170 (syst) $\pm$ 470 (lumi) pb and 1952 $\pm$ 4 (stat) $\pm$ 18 (syst) $\pm$ 45 (lumi) pb. The measured values agree with cross section calculations at next-to-next-to-leading-order in perturbative quantum chromodynamics. Fiducial and total inclusive cross sections, ratios of cross sections of W$^+$ and W$^-$ production as well as inclusive W and Z boson production, and ratios of these measurements at 5.02 and 13 TeV are reported.
Distributions of $m_T$ in the $W^{+}$ signal selection for e final states for the pp collisions at $\sqrt{s}=$ 5TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.
Distributions of $m_T$ in the $W^{+}$ signal selection for mu final states for the pp collisions at $\sqrt{s}=$ 5TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.
Distributions of $m_T$ in the $W^{+}$ signal selection for e final states for the pp collisions at $\sqrt{s}=$ 13TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.
The paper presents studies of Bose-Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range $p_{\rm T}>$ 100 MeV and $|\eta|<$ 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 $\mu$b$^{-1}$, 190 $\mu$b$^{-1}$ and 12.4 nb$^{-1}$ for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.
Systematic uncertainties on $\lambda$ and $R$ for the exponential fit of the two-particle double-ratio correlation function $R_{2}(Q)$ in the full kinematic region at $\sqrt{s} = 0.9$ and $7\ TeV$ for minimum-bias and high-multiplicity (HM) events, $n_{ch} \ge 2$ and $n_{ch} \ge 150$, respectively.
Results of fitting the multiplicity, $n_{ch}$, dependence of the BEC parameters $R$ and $\lambda$ with different functional forms for $\sqrt{s} = 0.9$ and $7\ TeV$. The $n_{ch}$ fit of $R(n_{ch})$ is applied to $7\ TeV$ minimum-bias events at $n_{ch} \le 55$ and to $0.9\ TeV$ minimum-bias events. The constant fit of $R(n_{ch} )$ is applied to $7\ TeV$ minimum-bias events for $n_{ch} > 55$ and to $7\ TeV$ high-multiplicity events. The exponential fit of $\lambda(n_{ch})$ is applied to $7\ TeV$ minimum-bias and high-multiplicity events.The error represent the quadratic sum of the statistical and systematic uncertainties.
Results of fitting the transverse momentum of the pair, $k_{T}$, dependence of the BEC parameters $R$ and $\lambda$ with the exponential fitting function for $\sqrt{s} = 0.9$ and $7\ TeV$. The error represent the quadratic sum of the statistical and systematic uncertainties.
We present a measurement of two-particle angular correlations in proton-proton collisions at sqrt(s) = 900 GeV and 7 TeV. The collision events were collected during 2009 and 2010 with the ATLAS detector at the Large Hadron Collider using a single-arm minimum bias trigger. Correlations are measured for charged particles produced in the kinematic range of transverse momentum pT > 100 MeV and pseudorapidity |eta| < 2.5. A complex structure in pseudorapidity and azimuth is observed at both collision energies. Results are compared to Pythia 8 and Herwig++ as well as to the AMBT2B, DW and Perugia 2011 tunes of Pythia 6. The data are not satisfactorily described by any of these models.
Corrected two particle RCORR distribution as a function of Delta(ETARAP) obtained by integrating the foreground and background distributions over Delta(PHI) between 0 and PI.
Corrected two particle RCORR distribution as a function of Delta(ETARAP) obtained by integrating the foreground and background distributions over Delta(PHI) between 0 and PI/2.
Corrected two particle RCORR distribution as a function of Delta(ETARAP) obtained by integrating the foreground and background distributions over Delta(PHI) between PI/2 and PI.
Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.
Drell-Yan events. Charged particle density in the toward, transverse and away regions.
Drell-Yan events. Charged particle density in the transMAX, transMIN and transDIF regions.
Drell-Yan events. Charged particle PTsum density in the toward, transverse and away regions.
We report on a CDF measurement of the total cross section and rapidity distribution, $d\sigma/dy$, for $q\bar{q}\to \gamma^{*}/Z\to e^{+}e^{-}$ events in the $Z$ boson mass region ($66<M_{ee}<116$GeV/c$^2$) produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$TeV with 2.1fb$^{-1}$ of integrated luminosity. The measured cross section of $257\pm16$pb and $d\sigma/dy$ distribution are compared with Next-to-Leading-Order(NLO) and Next-to-Next-to-Leading-Order(NNLO) QCD theory predictions with CTEQ and MRST/MSTW parton distribution functions (PDFs). There is good agreement between the experimental total cross section and $d\sigma/dy$ measurements with theoretical calculations with the most recent NNLO PDFs.
Total cross section integrated up to ABS(YRAP)=2.9.
Rapiditiy distribution of E+ E- pairs in the mass range from 66 to 116 GeV.
We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV using a data sample corresponding to 1.7/fb of integrated luminosity collected with the Collider Detector at Fermilab. We reconstruct ttbar events in the lepton+jets channel. The dominant background is the production of W bosons in association with multiple jets. To suppress this background, we identify electrons from the semileptonic decay of heavy-flavor jets. We measure a production cross section of 7.8 +/- 2.4 (stat) +/- 1.6 (syst) +/- 0.5 (lumi) pb. This is the first measurement of the top pair production cross section with soft electron tags in Run II of the Tevatron.
Measured cross section assuming a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.
A measurement of the $t\bar{t}$ production cross section in $p\bar{p}$ collisions at $\sqrt{s}$ = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II Detector. The result in a data sample corresponding to an integrated luminosity 2.8 $fb^{-1}$ is: $\sigma_{t\bar{t}}$ = 6.27 $\pm$ 0.73(stat) $\pm$ 0.63(syst) $\pm$ 0.39(lum) pb. for an assumed top mass of 175 GeV/$c^{2}$.
Measured cross section assuming a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.
We present a measurement of the top quark mass and of the top-antitop pair production cross section using p-pbar data collected with the CDFII detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb-1. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the absolute jet energy scale (JES) is measured simultaneously with the top quark mass. The measurement yields a value of 174.8 +- 2.4(stat+JES) ^{+1.2}_{-1.0}(syst) GeV/c^2, where the uncertainty from the absolute jet energy scale is evaluated together with the statistical uncertainty. The procedure measures also the amount of signal from which we derive a cross section, sigma_{ttbar} = 7.2 +- 0.5(stat) +- 1.0 (syst) +- 0.4 (lum) pb, for the measured values of top quark mass and JES.
Measured cross section for a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.