Total Cross-Sections for Charged Current Neutrino and anti-neutrino Interactions in BEBC in the Energy Range 20-GeV to 200-GeV

The Aachen-Bonn-CERN-London-Oxford-Saclay collaboration Bosetti, P.C. ; Deden, H. ; Deutschmann, M. ; et al.
Phys.Lett.B 70 (1977) 273, 1977.
Inspire Record 121301 DOI 10.17182/hepdata.27526

The charged-current cross sections for neutrinos and antineutrinos on nucleons in the energy range 20–200 GeV are given. Taken in conjunction with the previous Gargamelle results, they show that σ E is almost constant with energy for antineutrinos, and falls with energy for neutrinos. The value of 〈q 2 〉 E decreases with energy for both neutrinos and antineutrinos, and these deviations from exact Bjorken scaling are consistent with those observed in electron and muon inelastic scattering. We find no evidence for new heavy quark states with right-handed coupling.

2 data tables

Measured charged current total cross section.

Measured charged current total cross section.


Analysis of Nucleon Structure Functions in CERN Bubble Chamber Neutrino Experiments

The Aachen-Bonn-CERN-London-Oxford-Saclay collaboration Bosetti, P.C. ; Deden, H. ; Deutschmann, M. ; et al.
Nucl.Phys.B 142 (1978) 1-28, 1978.
Inspire Record 6678 DOI 10.17182/hepdata.35031

We present results for the differential cross sections of neutrinos and antineutrinos on nucleons in the energy range E = 2−200 GeV, from the BEBC and Gargamelle experiments. The structure functions F 2 , 2 χF 1 and χF 3 have been evaluated as a function of χ and q 2 . Deviations are observed from Bjorken scaling, which are very similar to those found in electron and muon inelastic scattering. For the Callan-Gross ratio, we find 2χF 1 F 2 = 0.80 ± 0.12 and the corresponding value for 〈R〉 = 〈 σ S σ T 〉 = 0.15 ± 0.10 . Our results are consistent with the Gross-Llewellyn-Smith sum rule; we measure ⩾2.5 ± 0.5 valence quarks per nucleon. Quark and antiquark distributions are given. The Nachtmann moments of F 2 and χF 3 are quantitatively consistent with the predictions from QCD. The value of the strong interaction parameter is λ = 0.74 ± 0.05 GeV without corrections, and 0.66 ± 0.05 GeV including α S 2 corrections. The moments of the gluon distribution are found to be positive and indicate an χ distribution of gluons which is comparable with that of the valence quarks.

2 data tables

No description provided.

No description provided.


Production Characteristics of the F Meson

The DASP collaboration Brandelik, R. ; Braunschweig, W. ; Martyn, H.U. ; et al.
Phys.Lett.B 80 (1979) 412-418, 1979.
Inspire Record 132410 DOI 10.17182/hepdata.27370

Inclusive cross sections of η production by e + e - annihilation for c.m. energies between 4.0 and 5.0 GeV are presented. The η production is shown to be correlated with the production of a weakly decaying particle, indicating that its main source is F production. At the 4.42 GeV resonance it is correlated with a low energy photon, suggesting F F ∗ or F ∗ F ∗ production. A mass determination of the F is made at 4.42 GeV using the F → ηπ decay channel.

1 data table

NUMERICAL VALUES MEASURED FROM GRAPH IN PREPRINT. A CHARM MODEL (METHOD 2) GAVE CONSISTENT RESULTS FOR BACKGROUND SEPARATION.


RESULTS FROM DASP ON E+ E- ANNIHILATION BETWEEN 3.1-GEV AND 5.2-GEV

The DASP collaboration Brandelik, R. ; Braunschweig, W. ; Martyn, H.U. ; et al.
Z.Phys.C 1 (1979) 233-256, 1979.
Inspire Record 145403 DOI 10.17182/hepdata.16476

This paper summarizes the measurements one+e− annihilation performed by the DASP Collaboration in the energy range between 3.1 and 5.2 GeV. The following topics are covered: total cross section, production and two body decays of the narrow resonances, radiative decays of theJ/ψ and ψ′ resonances and evidence for theX(2.82), ψ′ cascade decays, inclusive η production and evidence for theF meson, semileptonic decays of charmed mesons and properties of the heavy lepton.

5 data tables

THESE DATA ON R WERE PUBLISHED IN R. BRANDELIK ET AL., PL 76B, 361 (1978), THE RECORD OF WHICH HAS TABULATED CROSS SECTIONS WITH AND WITHOUT THE TAU HEAVY LEPTON CONTRIBUTION.

OBSERVATION OF J/PSI RESONANCE.

OBSERVATION OF PSI(3700)0 RESONANCE.

More…

Transverse momentum of charged hadrons observed in deep inelastic muon scattering

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 95 (1980) 306, 1980.
Inspire Record 154081 DOI 10.17182/hepdata.27176

The transverse momenta of charged hadrons produced in high energy muon-proton scattering have been studied. The average squared transverse momentum 〈 p 2 ⊥ 〉 shows a strong dependence on z = E h / v characteristic of intrinsic momentum effects and a significant rise as a function of s = W 2 . The W 2 , q 2 , x and z dependences of the data are compared with the predictions of a perturbative QCD model.

4 data tables

No description provided.

No description provided.

No description provided.

More…

A Measurement of the Nucleon Structure Function From Muon Carbon Deep Inelastic Scattering at High $Q^2$

The BCDMS collaboration Bollini, D. ; Frabetti, P.L. ; Heiman, G. ; et al.
Phys.Lett.B 104 (1981) 403-408, 1981.
Inspire Record 166160 DOI 10.17182/hepdata.71276

Deep inelastic scattering cross sections have been measured with the CERN SPS muon beam at incident energies of 120 and 200 GeV. Approximately 100 000 events at each energy are used to obtain the structure function F 2 ( x , Q 2 ) in the kinematic region 0.3< x <0.7 and 25 GeV 2 < Q 2 <200 GeV 2 .

8 data tables

No description provided.

No description provided.

No description provided.

More…

Forward Produced Protons and Anti-protons in Deep Inelastic Muon Proton Scattering

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 103 (1981) 388, 1981.
Inspire Record 166178 DOI 10.17182/hepdata.31185

A significant rate of forward proton and antiproton production has been observed in 120 and 280 GeV muon-proton scattering. The z and p T 2 distributions are presented. The dependence of the normalized production cross section on the muon variables x and Q 2 is studied.

2 data tables

No description provided.

No description provided.


MEASUREMENT OF THE NUCLEON STRUCTURE FUNCTION F(2) IN MUON - IRON INTERACTIONS AT 120-GeV, 250-GeV AND 280-GeV

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 105 (1981) 322-328, 1981.
Inspire Record 167335 DOI 10.17182/hepdata.31045

A measurement of the nucleon structure function F 2 on iron is presented. The data cover a kinematic range of 3.25 ⪕ Q 2 ⪕ 200 GeV 2 and 0.05 ⪕ x ⪕ 0.65 . The data clearly show scaling violation. Fits in leading-order QCD have been made and values for the scale breaking parameter λ are given.

54 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Proton Structure Function F(2) in Muon - Hydrogen Interactions at 120-GeV and 280-GeV

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 105 (1981) 315-321, 1981.
Inspire Record 167336 DOI 10.17182/hepdata.31046

The proton structure function F 2 has been measured in the range 2.5 ⪕ Q 2 ⪕ 170 GeV 2 and 0.03 ⪕ x ⪕ 0.65 . Scaling violation is clearly seen in the data. Results of fits to leading-order QCD are presented, together with values of the scale-breaking parameter λ.

40 data tables

No description provided.

No description provided.

No description provided.

More…

Muon Pairs and Upper Limit for $\Upsilon$ Production by 280-{GeV} Muons

Bollini, D. ; Frabetti, P.L. ; Heiman, G. ; et al.
Nucl.Phys.B 199 (1982) 27, 1982.
Inspire Record 169127 DOI 10.17182/hepdata.34208

The high mass μ + μ − pairs produced by 280 GeV μ + on a carbon target are studied in a search for the Y production. The high mass continuum in the region 2–18 GeV is interpreted in terms of QED pair production and of μ pairs originating from the decay of hidden and open charm particles as well as of hadrons ( π , K) from deep inelastic interactions. The upper limit for the upsilon production by muons is found to be, at the 90% confidence level, σ γ ·(γ→μ + μ − )<13·10 −39 cm 2 /nucleon.

8 data tables
More…