Measurement of inclusive spin structure functions of the deuteron with CLAS.

The CLAS collaboration Yun, J. ; Kuhn, S.E. ; Dodge, G.E. ; et al.
Phys.Rev.C 67 (2003) 055204, 2003.
Inspire Record 604799 DOI 10.17182/hepdata.41972

We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer ($Q^2$ = 0.27 -- 1.3 (GeV/c)$^2$) and final hadronic state mass in the nucleon resonance region ($W$ = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target ($^{15}$ND$_3$) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry $A_{||}$ and the spin structure function $g_1^d$. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function $g_1^d$ and study its approach to both the deep inelastic limit at large $Q^2$ and to the Gerasimov-Drell-Hearn sum rule at the real photon limit ($Q^2 \to 0$). We find that the first moment varies rapidly in the $Q^2$ range of our experiment and crosses zero at $Q^2$ between 0.5 and 0.8 (GeV/c)$^2$, indicating the importance of the $\Delta$ resonance at these momentum transfers.

7 data tables

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.27to 0.39 GeV**2.

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.39to 0.65 GeV**2.

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.65to 1.3 GeV**2.

More…

A next-to-leading order QCD analysis of the spin structure function g1.

The Spin Muon collaboration Adeva, B. ; Akdogan, T. ; Arik, E. ; et al.
Phys.Rev.D 58 (1998) 112002, 1998.
Inspire Record 471982 DOI 10.17182/hepdata.49415

We present a next-to-leading order QCD analysis of the presently available data on the spin structure function g1 including the final data from the Spin Muon Collaboration. We present results for the first moments of the proton, deuteron, and neutron structure functions, and determine singlet and nonsinglet parton distributions in two factorization schemes. We also test the Bjorken sum rule and find agreement with the theoretical prediction at the level of 10%.

7 data tables

The second systematic (DSYS) error is due to QCD evolution.

First moments of the fitted function G1 evaluated on unmeasured X regions. Total uncertainties due to experimental systematics and theoretical sourc es in the QCD evolution.

First moment of fitted G1 evaluated on the whole X region.

More…

Measurements of the proton and deuteron spin structure functions g1 and g2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.D 58 (1998) 112003, 1998.
Inspire Record 467140 DOI 10.17182/hepdata.22265

Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.

33 data tables

Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

More…

Measurement of the proton and deuteron spin structure function g1 in the resonance region.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 78 (1997) 815-819, 1997.
Inspire Record 426735 DOI 10.17182/hepdata.19582

We have measured the proton and deuteron spin structure functions g_1^p and g_1^d in the region of the nucleon resonances for W^2 < 5 GeV^2 and $Q^2\simeq 0.5$ and $Q^2\simeq 1.2$ GeV^2 by inelastically scattering 9.7 GeV polarized electrons off polarized $^{15}NH_3$ and $^{15}ND_3$ targets. We observe significant structure in g_1^p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W^2, to extract $\Gamma(Q^2)\equiv\int_0^1 g_1(x,Q^2) dx$. This is the first information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q^2 = 0.

8 data tables

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the full W region including the deep-inelastic region as given by fits to the world's data.

More…

Measurements of the Q**2 dependence of the proton and deuteron spin structure functions g1(p) and g1(d)

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Lett.B 364 (1995) 61-68, 1995.
Inspire Record 401107 DOI 10.17182/hepdata.28431

The ratio g1/F1 has been measured over the range 0.03<x<0.6 and 0.3<Q2<10 (GeV/c)2 using deep-inelastic scattering of polarized electrons from polarized protons and deuterons. We find g1/F1 to be consistent with no Q2-dependence at fixed x in the deep-inelastic region Q~2>1 (GeV/c)2. A trend is observed for g1/F1 to decrease at lower Q2. Fits to world data with and without a possible Q2-dependence in g1/F1 are in agreement with the Bjorken sum rule, but Delta_q is substantially less than the quark-parton model expectation.

16 data tables

No description provided.

No description provided.

No description provided.

More…

A Reevaluation of the Gottfried sum

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badelek, B. ; et al.
Phys.Rev.D 50 (1994) R1-R3, 1994.
Inspire Record 358419 DOI 10.17182/hepdata.71293

We present a new determination of the nonsinglet structure function ${\mathit{F}}_{2}^{\mathit{p}}$ - ${\mathit{F}}_{2}^{\mathit{n}}$ at ${\mathit{Q}}^{2}$=4 ${\mathrm{GeV}}^{2}$ using recently measured values of ${\mathit{F}}_{2}^{\mathit{d}}$ and ${\mathit{F}}_{2}^{\mathit{n}}$/${\mathit{F}}_{2}^{\mathit{p}}$. A new evaluation of the Gottfried sum is given, which remains below the simple quark-parton model value of 1/3.

4 data tables

Errors of F2(D) are the estimated total uncertainties and those on the ratio and difference are statistical only.

Values of the Gottfried Sum Rule integral (GS) defined as the integral between X(C=MIN) and X = 0.8 of (F2(P)-F2(N))DX/X.

No description provided.

More…

A COMBINED ANALYSIS OF SLAC EXPERIMENTS ON DEEP INELASTIC e p AND e d SCATTERING

Whitlow, L.W. ; Bodek, A. ; Rock, Stephen ; et al.
Nucl.Phys.B Proc.Suppl. 16 (1990) 215-216, 1990.
Inspire Record 280954 DOI 10.17182/hepdata.2721

None

44 data tables

No description provided.

No description provided.

No description provided.

More…

Determination of the Neutral Current Chiral Coupling Constants From $U(2)_L$, $U(2)_R$, $d(2)_L$ and $d(2)_R$ From a Neutrino and Anti-neutrino Deuterium Experiment

The WA25 collaboration Allasia, D. ; Angelini, C. ; Baldini, A. ; et al.
Nucl.Phys.B 307 (1988) 1-18, 1988.
Inspire Record 260699 DOI 10.17182/hepdata.33342

The ratios of neutral-current to charged-current cross sections of v and v interactions, seperately, on proton and neutron targets have been measured. The Big European Bubble Chamber (BEBC), filled with deuterium and equipped with an external muon identifier (EMI) and an internal picket fence (IPF), was exposed to the CERN SPS (anti)neutrino wide-band beam. The measured ratios are R v p= = 0.405 ± 0.024 ± 0.021 , R v n = 0.243 ± 0.013 ± 0.016, R v p = 0.301 ± 0.027 ± 0.024 and R v n = 0.490 ± 0.050 ± 0.037 . (The first error is statistical and the second systematic). From combinations of these ratios the following neutral-current chiral coupling constants have been determined: u L 2 = 0.099 ± 0.018 ± 0.008, d L 2 = 0.202 ± 0.020 ± 0.019, u R 2 = 0.020 ± 0.016 ± 0.009 and d R 2 = 0.002 ± 0.017 ± 0.010. These results agree with the predictions of the SU(2) × U(1) standard electroweak model. Assuming ϱ = 1, the corresponding value of sin 2 θ w is found to be 0.247 ± 0.029, whereas a two-parameter fit to the data yields sin 2 θ w = 0.243 ± 0.046 and ϱ = 0.996 ± 0.041.

8 data tables

No description provided.

No description provided.

No description provided.

More…

A Precise Determination of the Electroweak Mixing Angle from Semileptonic Neutrino Scattering

The CHARM collaboration Allaby, J.V. ; Amaldi, U. ; Barbiellini, G. ; et al.
Z.Phys.C 36 (1987) 611, 1987.
Inspire Record 249672 DOI 10.17182/hepdata.15697

The cross-section ratio of neutral-current and charged-current semileptonic interactions of muon-neutrinos on isoscalar nuclei has been measured with the result:Rv=0.3093±0.0031 for hadronic energy larger than 4 GeV. From this ratio we determined the electroweak mixing angle sin2θW, wheremc is the charm-quark mass in GeV/c2. Comparison with direct measurements ofmw andmz determines the radiative shift of the intermediate boson mass Δr=0.077±0.025(exp.)±0.038(syst.), in agreement with the prediction. Assuming the validity of the electroweak standard theory we determined ϱ=0.990−0.013(mc−1.5)±0.009(exp.)±0.003(theor.).

3 data tables

No description provided.

No description provided.

STATISTICAL ERROR IN THE VALUE CITED IS REDUCING, WHEN CUT IS MORE STRINGENT?.


Measurement of the Neutral Current Coupling Constants in Neutrino and Anti-neutrinos Interactions With Deuterium

The Amsterdam-Bergen-Bologna-Padua-Pisa-Saclay-Turin collaboration Allasia, D. ; Angelini, C. ; Baldini, A. ; et al.
Phys.Lett.B 133 (1983) 129, 1983.
Inspire Record 191539 DOI 10.17182/hepdata.30635

We have measured neutral and charged current interactions of ν μ and ν μ on proton and neutron. From a combination of ratios we determine the neutral current chiral coupling constants. The results are u 2 L = 0.13 ± 0.03, d 2 L = 0.19 ± 0.03, u 2 R = 0.02 ± 0.02 and d 2 R = 0.00 ± 0.02. These results agree with the predictions of the standard SU(2) × U(1) model. The corresponding value of sin 2 θ W is 0.20 ± 0.04.

6 data tables

No description provided.

No description provided.

No description provided.

More…