Date

Search for heavy Majorana or Dirac neutrinos and right-handed $W$ gauge bosons in final states with charged leptons and jets in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 1164, 2023.
Inspire Record 2652625 DOI 10.17182/hepdata.141277

A search for heavy right-handed Majorana or Dirac neutrinos $N_{\mathrm{R}}$ and heavy right-handed gauge bosons $W_{\mathrm{R}}$ is performed in events with energetic electrons or muons, with the same or opposite electric charge, and energetic jets. The search is carried out separately for topologies of clearly separated final-state products (``resolved'' channel) and topologies with boosted final states with hadronic and/or leptonic products partially overlapping and reconstructed as a large-radius jet (``boosted'' channel). The events are selected from $pp$ collision data at the LHC with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector at $\sqrt{s}$ = 13 TeV. No significant deviations from the Standard Model predictions are observed. The results are interpreted within the theoretical framework of a left-right symmetric model, and lower limits are set on masses in the heavy right-handed $W_{\mathrm{R}}$ boson and $N_{\mathrm{R}}$ plane. The excluded region extends to about $m(W_{\mathrm{R}}) = 6.4$ TeV for both Majorana and Dirac $N_{\mathrm{R}}$ neutrinos at $m(N_{\mathrm{R}})<1$ TeV. $N_{\mathrm{R}}$ with masses of less than 3.5 (3.6) TeV are excluded in the electron (muon) channel at $m(W_{\mathrm{R}})=4.8$ TeV for the Majorana neutrinos, and limits of $m(N_{\mathrm{R}})$ up to 3.6 TeV for $m(W_{\mathrm{R}}) = 5.2$ (5.0) TeV in the electron (muon) channel are set for the Dirac neutrinos. These constitute the most stringent exclusion limits to date for the model considered.

40 data tables

Observed 95% CL exclusion contours in the $(m(W_{R}), m(N_{R}))$ plane in the electron channel for boosted.

Expected 95% CL exclusion contours in the $(m(W_{R}), m(N_{R}))$ plane in the electron channel for boosted.

Observed 95% CL exclusion contours in the $(m(W_{R}), m(N_{R}))$ plane in the muon channel for boosted.

More…

Observation of four-top-quark production in the multilepton final state with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 496, 2023.
Inspire Record 2648095 DOI 10.17182/hepdata.140801

This paper presents the observation of four-top-quark ($t\bar{t}t\bar{t}$) production in proton-proton collisions at the LHC. The analysis is performed using an integrated luminosity of 140 fb$^{-1}$ at a centre-of-mass energy of 13 TeV collected using the ATLAS detector. Events containing two leptons with the same electric charge or at least three leptons (electrons or muons) are selected. Event kinematics are used to separate signal from background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The observed (expected) significance of the measured $t\bar{t}t\bar{t}$ signal with respect to the standard model (SM) background-only hypothesis is 6.1 (4.3) standard deviations. The $t\bar{t}t\bar{t}$ production cross section is measured to be $22.5^{+6.6}_{-5.5}$ fb, consistent with the SM prediction of $12.0 \pm 2.4$ fb within 1.8 standard deviations. Data are also used to set limits on the three-top-quark production cross section, being an irreducible background not measured previously, and to constrain the top-Higgs Yukawa coupling and effective field theory operator coefficients that affect $t\bar{t}t\bar{t}$ production.

27 data tables

Post-fit distributions for the number of jets ($N_{j}$) in CR $t\bar{t}W^{+}$+jets. The QmisID represents the backgrounds with a mis-assigned charge. HF e and HF $\mu$ are the backgrounds with fake/non-prompt leptons. Mat. Conv. and Low $m_{\gamma*}$ are the material and virtual photon conversions.

Post-fit distributions for the number of jets ($N_{j}$) in CR $t\bar{t}W^{-}$+jets. The QmisID represents the backgrounds with a mis-assigned charge. HF e and HF $\mu$ are the backgrounds with fake/non-prompt leptons. Mat. Conv. and Low $m_{\gamma*}$ are the material and virtual photon conversions.

Post-fit distributions for the number of jets ($N_{j}$) in CR 1b(+). The QmisID represents the backgrounds with a mis-assigned charge. HF e and HF $\mu$ are the backgrounds with fake/non-prompt leptons. Mat. Conv. and Low $m_{\gamma*}$ are the material and virtual photon conversions.

More…

Version 3
Inclusive and differential cross-sections for dilepton $t\bar{t}$ production measured in $\sqrt{s}=13\;$TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 07 (2023) 141, 2023.
Inspire Record 2648096 DOI 10.17182/hepdata.137888

Differential and double-differential distributions of kinematic variables of leptons from decays of top-quark pairs ($t\bar{t}$) are measured using the full LHC Run 2 data sample collected with the ATLAS detector. The data were collected at a $pp$ collision energy of $\sqrt{s}=13$ TeV and correspond to an integrated luminosity of 140 fb$^{-1}$. The measurements use events containing an oppositely charged $e\mu$ pair and $b$-tagged jets. The results are compared with predictions from several Monte Carlo generators. While no prediction is found to be consistent with all distributions, a better agreement with measurements of the lepton $p_{\text{T}}$ distributions is obtained by reweighting the $t\bar{t}$ sample so as to reproduce the top-quark $p_{\text{T}}$ distribution from an NNLO calculation. The inclusive top-quark pair production cross-section is measured as well, both in a fiducial region and in the full phase-space. The total inclusive cross-section is found to be \[ \sigma_{t\bar{t}} = 829 \pm 1\;(\textrm{stat}) \pm 13\;(\textrm{syst}) \pm 8\;(\textrm{lumi}) \pm 2\; (\textrm{beam})\ \textrm{pb}, \] where the uncertainties are due to statistics, systematic effects, the integrated luminosity and the beam energy. This is in excellent agreement with the theoretical expectation.

77 data tables

Definition of the fiducial phase space with the lepton candidate, electron $e$ and muon $\mu$, and jets.

Breakdown of systematic uncertainties in the measured fiducial cross-section. The impact of the top-quark mass on the cross-section is included in the table and not counted in the total uncertainty entry in the paper.

Data bootstrap post unfolding for the fiducial cross-section. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. All the provided numbers originate from pseudo-data, including the 0th entry, and are in units of [fb].

More…

Search for excited $\tau$-leptons and leptoquarks in the final state with $\tau$-leptons and jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 06 (2023) 199, 2023.
Inspire Record 2643456 DOI 10.17182/hepdata.141537

A search is reported for excited $\tau$-leptons and leptoquarks in events with two hadronically decaying $\tau$-leptons and two or more jets. The search uses proton-proton (pp) collision data at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment during the Run 2 of the Large Hadron Collider in 2015-2018. The total integrated luminosity is 139 fb$^{-1}$. The excited $\tau$-lepton is assumed to be produced and to decay via a four-fermion contact interaction into an ordinary $\tau$-lepton and a quark-antiquark pair. The leptoquarks are assumed to be produced in pairs via the strong interaction, and each leptoquark is assumed to couple to a charm or lighter quark and a $\tau$-lepton. No excess over the background prediction is observed. Excited $\tau$-leptons with masses below 2.8 TeV are excluded at 95% CL in scenarios with the contact interaction scale $\Lambda$ set to 10 TeV. At the extreme limit of model validity where $\Lambda$ is set equal to the excited $\tau$-lepton mass, excited $\tau$-leptons with masses below 4.6 TeV are excluded. Leptoquarks with masses below 1.3 TeV are excluded at 95% CL if their branching ratio to a charm quark and a $\tau$-lepton equals 1. The analysis does not exploit flavour-tagging in the signal region.

6 data tables

Observed and expected upper 95% CL limit on the $\tau^\ast$ production cross-section as a function of $m_{\tau^\ast}$ for a fixed value of the contact interaction scale, $\Lambda = 10$ TeV.

Observed and expected lower 95% CL limit on the contact interaction scale $\Lambda$ as a function of $m_{\tau^\ast}$.

Observed and expected upper 95% CL limit on the LQ production cross-section as a function of $m_\mathrm{LQ}$. The LQ couples to a tau lepton and a c-quark. The limits are also valid for scenarios in which the LQ couples to lighter quarks.

More…

Search for pair production of third-generation leptoquarks decaying into a bottom quark and a $\tau$-lepton with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 1075, 2023.
Inspire Record 2637935 DOI 10.17182/hepdata.145072

A search for pair-produced scalar or vector leptoquarks decaying into a $b$-quark and a $\tau$-lepton is presented using the full LHC Run 2 (2015-2018) data sample of 139 fb$^{-1}$ collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} =13$ TeV. Events in which at least one $\tau$-lepton decays hadronically are considered, and multivariate discriminants are used to extract the signals. No significant deviations from the Standard Model expectation are observed and 95% confidence-level upper limits on the production cross-section are derived as a function of leptoquark mass and branching ratio $B$ into a $\tau$-lepton and $b$-quark. For scalar leptoquarks, masses below 1460 GeV are excluded assuming $B=100$%, while for vector leptoquarks the corresponding limit is 1650 GeV (1910 GeV) in the minimal-coupling (Yang-Mills) scenario.

8 data tables

Acceptance $\times$ efficiency for the $\tau_\text{lep}\tau_\text{had}$ signal region assuming $\beta$ = 0.5 as a function of m$_\text{LQ}$.

Acceptance $\times$ efficiency for the $\tau_\text{had}\tau_\text{had}$ signal region assuming $\beta$ = 0.5 as a function of m$_\text{LQ}$.

The observed and expected 95% CL upper limits on the scalar LQ pair production cross-sections assuming B = 1 as a function of m$_\text{LQ}$.

More…

Search for a light charged Higgs boson in $t \rightarrow H^{\pm}b$ decays, with $H^{\pm} \rightarrow cb$, in the lepton+jets final state in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 09 (2023) 004, 2023.
Inspire Record 2635801 DOI 10.17182/hepdata.135457

A search for a charged Higgs boson, $H^{\pm}$, produced in top-quark decays, $t \rightarrow H^{\pm}b$, is presented. The search targets $H^{\pm}$ decays into a bottom and a charm quark, $H^{\pm} \rightarrow cb$. The analysis focuses on a selection enriched in top-quark pair production, where one top quark decays into a leptonically decaying $W$ boson and a bottom quark, and the other top quark decays into a charged Higgs boson and a bottom quark. This topology leads to a lepton-plus-jets final state, characterised by an isolated electron or muon and at least four jets. The search exploits the high multiplicity of jets containing $b$-hadrons, and deploys a neural network classifier that uses the kinematic differences between the signal and the background. The search uses a dataset of proton-proton collisions collected at a centre-of-mass energy $\sqrt{s}=13$ TeV between 2015 and 2018 with the ATLAS detector at CERN's Large Hadron Collider, amounting to an integrated luminosity of 139 fb$^{-1}$. Observed (expected) 95% confidence-level upper limits between 0.15% (0.09%) and 0.42% (0.25%) are derived for the product of branching fractions $\mathscr{B}(t\rightarrow H^{\pm}b) \times \mathscr{B}(H^{\pm}\rightarrow cb)$ for charged Higgs boson masses between 60 and 160 GeV, assuming the SM production of the top-quark pairs.

4 data tables

The observed 95% CL upper limits on $\mathscr{B}=\mathscr{B}(t\rightarrow H^{\pm}b) \times \mathscr{B}(H^{\pm}\rightarrow cb)$ as a function of $m_{H^{\pm}}$ and the expectation (dashed) under the background-only hypothesis. The inner green and outer yellow shaded bands show the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties of the expected limits. The exclusion limits are presented for $m_{H^{\pm}}$ between 60 and 160 GeV with 10 GeV $m_{H^{\pm}}$ spacing and linear interpolation between adjacent mass points. Superimposed on the upper limits, the predictions from the 3HDM are shown, corresponding to three benchmark values for the parameters $X$, $Y$, and $Z$

Pre-fit event yields in each of the nine analysis regions. The $H^{\pm}$ signal yields for $m_{H^{\pm}}=130$ GeV and $m_{H^{\pm}}=70$ GeV are normalised to $\mathscr{B}_{\mathrm{ref}}=1\%$. The quoted uncertainties are the sum in quadrature of statistical and systematic uncertainties of the yields, computed taking into account correlations among processes resulting from the data-based $t\bar{t}$ correction procedure.

Post-fit yields in each of the nine analysis regions considered. The total prediction is shown after the fit to data under the signal-plus-background hypothesis assuming $H^{\pm}$ signal with $m_{H^{\pm}}=130$ GeV. The predicted yileds for the $H^{\pm}$ signal with $m_{H^{\pm}}=70$ GeV are also shown for reference. The best fit-values of $\mathscr{B}$ for $H^{\pm}$ signal with $m_{H^{\pm}}=130$ GeV and $m_{H^{\pm}}=70$ GeV are 0.16% and 0.07% respectively. The quoted uncertainties are the sum in quadrature of statistical and systematic uncertainties of the yields, computed taking into account correlations among nuisance parameters and among processes.

More…

Version 2
Searches for lepton-flavour-violating decays of the Higgs boson into $e\tau$ and $\mu\tau$ in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 166, 2023.
Inspire Record 2631088 DOI 10.17182/hepdata.135719

This paper presents direct searches for lepton flavour violation in Higgs boson decays, $H\rightarrow e\tau$ and $H\rightarrow\mu\tau$, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Leptonic ($\tau \rightarrow \ell \nu_\ell \nu_\tau$) and hadronic ($\tau \rightarrow $ hadrons $ \nu_\tau$) decays of the $\tau$-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, $\mathcal{B}(H\rightarrow e\tau)<0.20\%$ (0.12%) and $\mathcal{B}(H\rightarrow \mu\tau)<0.18\%$ (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential $H \rightarrow e\tau$ and $H \rightarrow\mu\tau$ signals. The best-fit branching ratio difference, $\mathcal{B}(H\rightarrow \mu\tau)- \mathcal{B}(H\rightarrow e\tau)$, measured with the Symmetry method in the channel where the $\tau$-lepton decays to leptons, is (0.25 $\pm$ 0.10)%, compatible with a value of zero within 2.5$\sigma$.

20 data tables

Fit results of the simultaneous measurements of the $H\to e\tau$ and $H\to \mu\tau$ signals (2POI) showing upper limits at 95% C.L. on the LFV branching ratios of the Higgs boson $H\to e\tau$. The results from standalone channel/categories fits are compared with the results of the combined fit.

Fit results of the simultaneous measurements of the $H\to e\tau$ and $H\to \mu\tau$ signals (2POI) showing best-fit values of the LFV branching ratios of the Higgs boson $\hat{B}$($H\to e\tau$). The results from standalone channel/categories fits are compared with the results of the combined fit.

Fit results of the simultaneous measurements of the $H\to e\tau$ and $H\to \mu\tau$ signals (2POI) showing upper limits at 95% C.L. on the LFV branching ratios of the Higgs boson $H\to \mu\tau$. The results from standalone channel/categories fits are compared with the results of the combined fit.

More…

Inclusive-photon production and its dependence on photon isolation in $pp$ collisions at $\sqrt s=13$ TeV using 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 086, 2023.
Inspire Record 2628741 DOI 10.17182/hepdata.134100

Measurements of differential cross sections are presented for inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb$^{-1}$ of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region.

48 data tables

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<0.8$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.8<|\eta^{\gamma}|<1.37$ and photon isolation cone radius $R=0.4$.

More…

Version 2
Search for long-lived, massive particles in events with displaced vertices and multiple jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 200, 2023.
Inspire Record 2628398 DOI 10.17182/hepdata.137762

A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.

96 data tables

<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &gt; 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &gt; 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R &lt; 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>

Validation of background estimate in validation regions for the High-pT jet selections

Validation of background estimate in validation regions for the Trackless jet selections

More…

Determination of the strong coupling constant from transverse energy$-$energy correlations in multijet events at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 085, 2023.
Inspire Record 2625697 DOI 10.17182/hepdata.135073

Measurements of transverse energy$-$energy correlations and their associated azimuthal asymmetries in multijet events are presented. The analysis is performed using a data sample corresponding to 139 $\mbox{fb\(^{-1}\)}$ of proton$-$proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, collected with the ATLAS detector at the Large Hadron Collider. The measurements are presented in bins of the scalar sum of the transverse momenta of the two leading jets and unfolded to particle level. They are then compared to next-to-next-to-leading-order perturbative QCD calculations for the first time, which feature a significant reduction in the theoretical uncertainties estimated using variations of the renormalisation and factorisation scales. The agreement between data and theory is good, thus providing a precision test of QCD at large momentum transfers $Q$. The strong coupling constant $\alpha_s$ is extracted differentially as a function of $Q$, showing a good agreement with the renormalisation group equation and with previous analyses. A simultaneous fit to all transverse energy$-$energy correlation distributions across different kinematic regions yields a value of $\alpha_\mathrm{s}(m_Z) = 0.1175 \pm 0.0006 \mbox{ (exp.)} ^{+0.0034}_{-0.0017} \mbox{ (theo.)}$, while the global fit to the asymmetry distributions yields $\alpha_{\mathrm{s}}(m_Z) = 0.1185 \pm 0.0009 \mbox{ (exp.)} ^{+0.0025}_{-0.0012} \mbox{ (theo.)}$.

50 data tables

Particle-level TEEC results

Particle-level TEEC results for the first HT2 bin

Particle-level TEEC results for the second HT2 bin

More…