Showing 10 of 328 results
Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.
CHI distribution for mass bin 340 to 520 GeV.
CHI distribution for mass bin 520 to 800 GeV.
CHI distribution for mass bin 800 to 1200 GeV.
CHI distribution for mass bin > 1200 GeV.
Centrality Ratio.
We report the first measurement of the differential cross section for the process gamma gamma --> eta eta in the kinematic range above the eta eta threshold, 1.096 GeV < W < 3.8 GeV over nearly the entire solid angle range, |cos theta*| <= 0.9 or <= 1.0 depending on W, where W and theta* are the energy and eta scattering angle, respectively, in the gamma gamma center-of-mass system. The results are based on a 393 fb^{-1} data sample collected with the Belle detector at the KEKB e^+ e^- collider. In the W range 1.1-2.0 GeV/c^2 we perform an analysis of resonance amplitudes for various partial waves, and at higher energy we compare the energy and the angular dependences of the cross section with predictions of theoretical models and extract contributions of the chi_{cJ} charmonia.
Total cross section.
Angular dependence of the differential cross section for the W range 1.096 to 1.120 GeV.
Angular dependence of the differential cross section for the W range 1.120 to 1.160 GeV.
Angular dependence of the differential cross section for the W range 1.160 to 1.200 GeV.
Angular dependence of the differential cross section for the W range 1.200 to 1.240 GeV.
Angular dependence of the differential cross section for the W range 1.240 to 1.280 GeV.
Angular dependence of the differential cross section for the W range 1.280 to 1.320 GeV.
Angular dependence of the differential cross section for the W range 1.320 to 1.360 GeV.
Angular dependence of the differential cross section for the W range 1.360 to 1.400 GeV.
Angular dependence of the differential cross section for the W range 1.400 to 1.440 GeV.
Angular dependence of the differential cross section for the W range 1.440 to 1.480 GeV.
Angular dependence of the differential cross section for the W range 1.480 to 1.520 GeV.
Angular dependence of the differential cross section for the W range 1.520 to 1.560 GeV.
Angular dependence of the differential cross section for the W range 1.560 to 1.600 GeV.
Angular dependence of the differential cross section for the W range 1.600 to 1.640 GeV.
Angular dependence of the differential cross section for the W range 1.640 to 1.680 GeV.
Angular dependence of the differential cross section for the W range 1.680 to 1.720 GeV.
Angular dependence of the differential cross section for the W range 1.720 to 1.760 GeV.
Angular dependence of the differential cross section for the W range 1.760 to 1.800 GeV.
Angular dependence of the differential cross section for the W range 1.800 to 1.840 GeV.
Angular dependence of the differential cross section for the W range 1.840 to 1.880 GeV.
Angular dependence of the differential cross section for the W range 1.880 to 1.920 GeV.
Angular dependence of the differential cross section for the W range 1.920 to 1.960 GeV.
Angular dependence of the differential cross section for the W range 1.960 to 2.000 GeV.
Angular dependence of the differential cross section for the W range 2.000 to 2.040 GeV.
Angular dependence of the differential cross section for the W range 2.040 to 2.080 GeV.
Angular dependence of the differential cross section for the W range 2.080 to 2.120 GeV.
Angular dependence of the differential cross section for the W range 2.120 to 2.160 GeV.
Angular dependence of the differential cross section for the W range 2.160 to 2.200 GeV.
Angular dependence of the differential cross section for the W range 2.200 to 2.240 GeV.
Angular dependence of the differential cross section for the W range 2.240 to 2.280 GeV.
Angular dependence of the differential cross section for the W range 2.280 to 2.320 GeV.
Angular dependence of the differential cross section for the W range 2.320 to 2.360 GeV.
Angular dependence of the differential cross section for the W range 2.360 to 2.400 GeV.
Angular dependence of the differential cross section for the W range 2.400 to 2.500 GeV.
Angular dependence of the differential cross section for the W range 2.500 to 2.600 GeV.
Angular dependence of the differential cross section for the W range 2.600 to 2.700 GeV.
Angular dependence of the differential cross section for the W range 2.700 to 2.800 GeV.
Angular dependence of the differential cross section for the W range 2.800 to 2.900 GeV.
Angular dependence of the differential cross section for the W range 2.900 to 3.000 GeV.
Angular dependence of the differential cross section for the W range 3.000 to 3.100 GeV.
Angular dependence of the differential cross section for the W range 3.100 to 3.200 GeV.
Angular dependence of the differential cross section for the W range 3.200 to 3.300 GeV.
High-statistics measurements of differential cross sections and recoil polarizations for the reaction $\gamma p \rightarrow K^+ \Sigma^0$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($\sqrt{s}$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $K^{+}p\pi^{-}$($\gamma$) and $K^{+}p$($\pi^-, \gamma$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $\sqrt{s}$ coverage. Above $\sqrt{s} \approx 2.5$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($P_\Sigma$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $P_\Sigma$ is of the same magnitude but opposite sign as $P_\Lambda$, in agreement with the static SU(6) quark model prediction of $P_\Sigma \approx -P_\Lambda$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $P_\Sigma$ and $P_\Lambda$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.69 to 1.7 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.7 to 1.71 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.71 to 1.72 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.72 to 1.73 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.73 to 1.74 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.74 to 1.75 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.75 to 1.76 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.76 to 1.77 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.77 to 1.78 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.78 to 1.79 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.79 to 1.8 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.8 to 1.81 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.81 to 1.82 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.82 to 1.83 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.83 to 1.84 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.84 to 1.85 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.85 to 1.86 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.86 to 1.87 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.87 to 1.88 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.88 to 1.89 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.89 to 1.9 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.9 to 1.91 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.91 to 1.92 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.92 to 1.93 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.93 to 1.94 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.94 to 1.95 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.96 to 1.97 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.97 to 1.98 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.98 to 1.99 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.99 to 2 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2 to 2.01 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.01 to 2.02 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.02 to 2.03 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.03 to 2.04 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.04 to 2.05 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.05 to 2.06 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.06 to 2.07 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.07 to 2.08 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.08 to 2.09 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.09 to 2.1 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.1 to 2.11 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.11 to 2.12 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.12 to 2.13 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.13 to 2.14 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.14 to 2.15 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.15 to 2.16 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.16 to 2.17 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.17 to 2.18 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.18 to 2.19 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.19 to 2.2 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.2 to 2.21 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.21 to 2.22 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.22 to 2.23 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.23 to 2.24 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.24 to 2.25 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.25 to 2.26 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.26 to 2.27 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.27 to 2.28 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.28 to 2.29 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.29 to 2.3 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.3 to 2.31 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.31 to 2.32 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.32 to 2.33 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.33 to 2.34 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.34 to 2.35 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.35 to 2.36 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.36 to 2.37 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.37 to 2.38 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.38 to 2.39 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.39 to 2.4 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.4 to 2.41 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.41 to 2.42 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.42 to 2.43 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.43 to 2.44 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.44 to 2.45 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.45 to 2.46 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.46 to 2.47 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.47 to 2.48 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.48 to 2.49 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.49 to 2.5 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.5 to 2.51 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.51 to 2.52 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.52 to 2.53 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.53 to 2.54 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.54 to 2.55 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.55 to 2.56 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.56 to 2.57 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.57 to 2.58 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.58 to 2.59 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.59 to 2.6 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.6 to 2.61 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.61 to 2.62 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.62 to 2.63 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.63 to 2.64 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.64 to 2.65 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.65 to 2.66 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.66 to 2.67 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.67 to 2.68 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.68 to 2.69 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.69 to 2.7 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.7 to 2.71 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.71 to 2.72 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.72 to 2.73 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.75 to 2.76 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.76 to 2.77 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.77 to 2.78 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.78 to 2.79 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.79 to 2.8 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.8 to 2.81 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.81 to 2.82 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.82 to 2.83 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.83 to 2.84 GeV.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.95 to -0.85.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.85 to -0.75.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.75 to -0.65.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.65 to -0.55.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.55 to -0.45.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.45 to -0.35.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.35 to -0.25.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.25 to -0.15.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.15 to -0.05.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.05 to 0.05.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.05 to 0.15.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.15 to 0.25.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.25 to 0.35.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.35 to 0.45.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.45 to 0.55.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.55 to 0.65.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.65 to 0.75.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.75 to 0.85.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.85 to 0.95.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.85 to -0.75.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.75 to -0.65.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.65 to -0.55.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.55 to -0.45.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.45 to -0.35.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.35 to -0.25.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.25 to -0.15.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.15 to -0.05.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.05 to 0.05.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.05 to 0.15.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.15 to 0.25.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.25 to 0.35.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.35 to 0.45.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.45 to 0.55.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.55 to 0.65.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.65 to 0.75.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.75 to 0.85.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.85 to 0.95.
The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|<2.5 and pT>500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.
Average value of charged particle multiplicity per event and unit of pseudorapidity in the pseudorapidity range from -0.2 to 0.2.
Charged particle multiplicity as a function of pseudorapidity.
Charged particle multiplicity as a function of transverse momentum.
Charged particle multiplicity distribution.
Average charged particle transverse momentum as a function of the number of charged particles in the event.
Differential cross sections of the reaction gamma d to K+ Sigma- (p) have been measured with the CLAS detector at Jefferson Lab using incident photons with energies between 1.1 and 3.6 GeV. This is the first complete set of strangeness photoproduction data on the neutron covering a broad angular range. At energies close to threshold and up to E_gamma ~ 1.8 GeV, the shape of the angular distribution is suggestive of the presence of s-channel production mechanisms. For E_gamma > 1.8 GeV, a clear forward peak appears and becomes more prominent as the photon energy increases, suggesting contributions from t-channel production mechanisms. These data can be used to constrain future analysis of this reaction.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.15 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.25 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.35 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.45 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.55 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.65 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.75 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.85 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.95 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.05 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.15 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.25 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.35 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.45 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.55 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.65 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.75 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.85 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.95 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 3.05 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 3.15 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 3.25 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 3.35 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 3.45 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 3.55 GeV.. Errors contain both statistics and systematics.
We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies/ results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.65-1.66 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.66-1.67 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.67-1.68 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.68-1.69 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.69-1.7 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.7-1.71 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.71-1.72 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.72-1.73 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.73-1.74 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.74-1.75 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.75-1.76 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.76-1.77 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.77-1.78 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.78-1.79 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.79-1.8 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.8-1.81 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.81-1.82 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.82-1.83 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.83-1.84 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.84-1.85 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.85-1.86 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.86-1.87 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.87-1.88 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.88-1.89 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.89-1.9 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.9-1.91 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.91-1.92 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.92-1.93 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.93-1.94 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.94-1.95 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.96-1.97 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.97-1.98 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.98-1.99 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.99-2 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2-2.01 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.01-2.02 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.02-2.03 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.03-2.04 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.04-2.05 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.05-2.06 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.06-2.07 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.07-2.08 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.08-2.09 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.09-2.1 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.1-2.11 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.11-2.12 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.12-2.13 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.13-2.14 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.14-2.15 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.15-2.16 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.16-2.17 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.17-2.18 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.18-2.19 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.19-2.2 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.2-2.21 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.21-2.22 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.22-2.23 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.23-2.24 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.24-2.25 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.25-2.26 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.26-2.27 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.27-2.28 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.28-2.29 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.29-2.3 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.3-2.31 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.31-2.32 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.32-2.33 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.33-2.34 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.34-2.35 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.35-2.36 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.36-2.37 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.37-2.38 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.38-2.39 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.39-2.4 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.4-2.41 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.41-2.42 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.42-2.43 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.43-2.44 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.44-2.45 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.45-2.46 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.46-2.47 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.47-2.48 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.48-2.49 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.49-2.5 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.5-2.51 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.51-2.52 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.52-2.53 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.53-2.54 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.54-2.55 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.55-2.56 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.56-2.57 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.57-2.58 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.58-2.59 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.59-2.6 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.6-2.61 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.61-2.62 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.62-2.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.63-2.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.64-2.65 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.65-2.66 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.66-2.67 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.67-2.68 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.68-2.69 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.69-2.7 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.7-2.71 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.71-2.72 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.72-2.73 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.75-2.76 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.76-2.77 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.77-2.78 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.78-2.79 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.79-2.8 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.8-2.81 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.81-2.82 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.82-2.83 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.83-2.84 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.65-1.66 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.66-1.67 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.67-1.68 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.68-1.69 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.69-1.7 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.7-1.71 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.71-1.72 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.72-1.73 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.73-1.74 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.74-1.75 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.75-1.76 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.76-1.77 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.77-1.78 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.78-1.79 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.79-1.8 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.8-1.81 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.81-1.82 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.82-1.83 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.83-1.84 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.84-1.85 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.85-1.86 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.86-1.87 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.87-1.88 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.88-1.89 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.89-1.9 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.9-1.91 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.91-1.92 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.92-1.93 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.93-1.94 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.94-1.95 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.95-1.96 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.96-1.97 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.97-1.98 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.98-1.99 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.99-2 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2-2.01 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.01-2.02 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.02-2.03 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.03-2.04 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.04-2.05 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.05-2.06 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.06-2.07 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.07-2.08 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.08-2.09 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.09-2.1 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.1-2.11 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.11-2.12 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.12-2.13 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.13-2.14 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.14-2.15 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.15-2.16 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.16-2.17 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.17-2.18 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.18-2.19 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.19-2.2 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.2-2.21 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.21-2.22 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.22-2.23 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.23-2.24 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.24-2.25 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.25-2.26 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.26-2.27 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.27-2.28 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.28-2.29 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.29-2.3 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.3-2.31 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.31-2.32 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.32-2.33 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.33-2.34 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.34-2.35 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.35-2.36 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.36-2.37 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.37-2.38 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.38-2.39 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.39-2.4 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.4-2.41 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.41-2.42 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.42-2.43 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.43-2.44 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.44-2.45 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.45-2.46 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.46-2.47 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.47-2.48 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.48-2.49 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.49-2.5 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.5-2.51 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.51-2.52 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.52-2.53 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.53-2.54 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.54-2.55 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.55-2.56 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.56-2.57 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.57-2.58 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.58-2.59 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.59-2.6 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.6-2.61 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.61-2.62 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.62-2.63 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.63-2.64 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.64-2.65 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.65-2.66 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.66-2.67 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.67-2.68 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.68-2.69 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.69-2.7 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.7-2.71 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.71-2.72 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.72-2.73 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.73-2.74 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.74-2.75 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.75-2.76 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.76-2.77 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.77-2.78 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.78-2.79 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.79-2.8 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.8-2.81 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.81-2.82 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.82-2.83 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.83-2.84 GeV.
High-statistics differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta-prime have been measured using the CLAS at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the eta-prime measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.
Differential cross section for the W range 1.68 to 1.69 GeV.
Differential cross section for the W range 1.69 to 1.70 GeV.
Differential cross section for the W range 1.70 to 1.71 GeV.
Differential cross section for the W range 1.71 to 1.72 GeV.
Differential cross section for the W range 1.72 to 1.73 GeV.
Differential cross section for the W range 1.73 to 1.74 GeV.
Differential cross section for the W range 1.74 to 1.75 GeV.
Differential cross section for the W range 1.75 to 1.76 GeV.
Differential cross section for the W range 1.76 to 1.77 GeV.
Differential cross section for the W range 1.77 to 1.78 GeV.
Differential cross section for the W range 1.78 to 1.79 GeV.
Differential cross section for the W range 1.79 to 1.80 GeV.
Differential cross section for the W range 1.80 to 1.81 GeV.
Differential cross section for the W range 1.81 to 1.82 GeV.
Differential cross section for the W range 1.82 to 1.83 GeV.
Differential cross section for the W range 1.83 to 1.84 GeV.
Differential cross section for the W range 1.84 to 1.85 GeV.
Differential cross section for the W range 1.85 to 1.86 GeV.
Differential cross section for the W range 1.86 to 1.87 GeV.
Differential cross section for the W range 1.87 to 1.88 GeV.
Differential cross section for the W range 1.88 to 1.89 GeV.
Differential cross section for the W range 1.89 to 1.90 GeV.
Differential cross section for the W range 1.90 to 1.91 GeV.
Differential cross section for the W range 1.91 to 1.92 GeV.
Differential cross section for the W range 1.92 to 1.93 GeV.
Differential cross section for the W range 1.93 to 1.94 GeV.
Differential cross section for the W range 1.94 to 1.95 GeV.
Differential cross section for the W range 1.96 to 1.97 GeV.
Differential cross section for the W range 1.97 to 1.98 GeV.
Differential cross section for the W range 1.98 to 1.99 GeV.
Differential cross section for the W range 1.99 to 2.00 GeV.
Differential cross section for the W range 2.00 to 2.01 GeV.
Differential cross section for the W range 2.01 to 2.02 GeV.
Differential cross section for the W range 2.02 to 2.03 GeV.
Differential cross section for the W range 2.03 to 2.04 GeV.
Differential cross section for the W range 2.04 to 2.05 GeV.
Differential cross section for the W range 2.05 to 2.06 GeV.
Differential cross section for the W range 2.06 to 2.07 GeV.
Differential cross section for the W range 2.07 to 2.08 GeV.
Differential cross section for the W range 2.08 to 2.09 GeV.
Differential cross section for the W range 2.09 to 2.10 GeV.
Differential cross section for the W range 2.10 to 2.12 GeV.
Differential cross section for the W range 2.12 to 2.14 GeV.
Differential cross section for the W range 2.14 to 2.16 GeV.
Differential cross section for the W range 2.16 to 2.18 GeV.
Differential cross section for the W range 2.18 to 2.20 GeV.
Differential cross section for the W range 2.20 to 2.22 GeV.
Differential cross section for the W range 2.22 to 2.24 GeV.
Differential cross section for the W range 2.24 to 2.26 GeV.
Differential cross section for the W range 2.26 to 2.28 GeV.
Differential cross section for the W range 2.28 to 2.30 GeV.
Differential cross section for the W range 2.30 to 2.32 GeV.
Differential cross section for the W range 2.32 to 2.34 GeV.
Differential cross section for the W range 2.34 to 2.36 GeV.
Differential cross section for the W range 2.36 to 2.40 GeV.
Differential cross section for the W range 2.40 to 2.44 GeV.
Differential cross section for the W range 2.44 to 2.48 GeV.
Differential cross section for the W range 2.48 to 2.52 GeV.
Differential cross section for the W range 2.52 to 2.56 GeV.
Differential cross section for the W range 2.56 to 2.60 GeV.
Differential cross section for the W range 2.60 to 2.64 GeV.
Differential cross section for the W range 2.64 to 2.68 GeV.
Differential cross section for the W range 2.68 to 2.73 GeV.
Differential cross section for the W range 2.75 to 2.84 GeV.
Differential cross section for the W range 1.92 to 1.93 GeV.
Differential cross section for the W range 1.93 to 1.94 GeV.
Differential cross section for the W range 1.94 to 1.95 GeV.
Differential cross section for the W range 1.96 to 1.97 GeV.
Differential cross section for the W range 1.97 to 1.98 GeV.
Differential cross section for the W range 1.98 to 1.99 GeV.
Differential cross section for the W range 1.99 to 2.00 GeV.
Differential cross section for the W range 2.00 to 2.01 GeV.
Differential cross section for the W range 2.01 to 2.02 GeV.
Differential cross section for the W range 2.02 to 2.03 GeV.
Differential cross section for the W range 2.03 to 2.04 GeV.
Differential cross section for the W range 2.04 to 2.05 GeV.
Differential cross section for the W range 2.05 to 2.06 GeV.
Differential cross section for the W range 2.06 to 2.07 GeV.
Differential cross section for the W range 2.07 to 2.08 GeV.
Differential cross section for the W range 2.08 to 2.09 GeV.
Differential cross section for the W range 2.09 to 2.10 GeV.
Differential cross section for the W range 2.10 to 2.12 GeV.
Differential cross section for the W range 2.12 to 2.14 GeV.
Differential cross section for the W range 2.14 to 2.16 GeV.
Differential cross section for the W range 2.16 to 2.18 GeV.
Differential cross section for the W range 2.18 to 2.20 GeV.
Differential cross section for the W range 2.20 to 2.22 GeV.
Differential cross section for the W range 2.22 to 2.24 GeV.
Differential cross section for the W range 2.24 to 2.26 GeV.
Differential cross section for the W range 2.26 to 2.28 GeV.
Differential cross section for the W range 2.28 to 2.30 GeV.
Differential cross section for the W range 2.30 to 2.32 GeV.
Differential cross section for the W range 2.32 to 2.34 GeV.
Differential cross section for the W range 2.34 to 2.36 GeV.
Differential cross section for the W range 2.36 to 2.40 GeV.
Differential cross section for the W range 2.40 to 2.44 GeV.
Differential cross section for the W range 2.44 to 2.48 GeV.
Differential cross section for the W range 2.48 to 2.52 GeV.
Differential cross section for the W range 2.52 to 2.56 GeV.
Differential cross section for the W range 2.56 to 2.60 GeV.
Differential cross section for the W range 2.60 to 2.64 GeV.
Differential cross section for the W range 2.64 to 2.68 GeV.
Differential cross section for the W range 2.68 to 2.73 GeV.
Differential cross section for the W range 2.75 to 2.84 GeV.
High-statistics differential cross sections and spin density matrix elements for the reaction $\gamma p \to p \omega$ have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into $\cos{\theta_{CM}^{\omega}}$ bins of width 0.1. These are the most precise and extensive $\omega$ photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.
Differential cross section for the W range 1.72 to 1.73 GeV.
Differential cross section for the W range 1.73 to 1.74 GeV.
Differential cross section for the W range 1.74 to 1.75 GeV.
Differential cross section for the W range 1.75 to 1.76 GeV.
Differential cross section for the W range 1.76 to 1.77 GeV.
Differential cross section for the W range 1.77 to 1.78 GeV.
Differential cross section for the W range 1.78 to 1.79 GeV.
Differential cross section for the W range 1.79 to 1.80 GeV.
Differential cross section for the W range 1.80 to 1.81 GeV.
Differential cross section for the W range 1.81 to 1.82 GeV.
Differential cross section for the W range 1.82 to 1.83 GeV.
Differential cross section for the W range 1.83 to 1.84 GeV.
Differential cross section for the W range 1.84 to 1.85 GeV.
Differential cross section for the W range 1.85 to 1.86 GeV.
Differential cross section for the W range 1.86 to 1.87 GeV.
Differential cross section for the W range 1.87 to 1.88 GeV.
Differential cross section for the W range 1.88 to 1.89 GeV.
Differential cross section for the W range 1.89 to 1.90 GeV.
Differential cross section for the W range 1.90 to 1.91 GeV.
Differential cross section for the W range 1.91 to 1.92 GeV.
Differential cross section for the W range 1.92 to 1.93 GeV.
Differential cross section for the W range 1.93 to 1.94 GeV.
Differential cross section for the W range 1.94 to 1.95 GeV.
Differential cross section for the W range 1.96 to 1.97 GeV.
Differential cross section for the W range 1.97 to 1.98 GeV.
Differential cross section for the W range 1.98 to 1.99 GeV.
Differential cross section for the W range 1.99 to 2.00 GeV.
Differential cross section for the W range 2.00 to 2.01 GeV.
Differential cross section for the W range 2.01 to 2.02 GeV.
Differential cross section for the W range 2.02 to 2.03 GeV.
Differential cross section for the W range 2.03 to 2.04 GeV.
Differential cross section for the W range 2.04 to 2.05 GeV.
Differential cross section for the W range 2.05 to 2.06 GeV.
Differential cross section for the W range 2.06 to 2.07 GeV.
Differential cross section for the W range 2.07 to 2.08 GeV.
Differential cross section for the W range 2.08 to 2.09 GeV.
Differential cross section for the W range 2.09 to 2.10 GeV.
Differential cross section for the W range 2.10 to 2.11 GeV.
Differential cross section for the W range 2.11 to 2.12 GeV.
Differential cross section for the W range 2.12 to 2.13 GeV.
Differential cross section for the W range 2.13 to 2.14 GeV.
Differential cross section for the W range 2.14 to 2.15 GeV.
Differential cross section for the W range 2.15 to 2.16 GeV.
Differential cross section for the W range 2.16 to 2.17 GeV.
Differential cross section for the W range 2.17 to 2.18 GeV.
Differential cross section for the W range 2.18 to 2.19 GeV.
Differential cross section for the W range 2.19 to 2.20 GeV.
Differential cross section for the W range 2.20 to 2.21 GeV.
Differential cross section for the W range 2.21 to 2.22 GeV.
Differential cross section for the W range 2.22 to 2.23 GeV.
Differential cross section for the W range 2.23 to 2.24 GeV.
Differential cross section for the W range 2.24 to 2.25 GeV.
Differential cross section for the W range 2.25 to 2.26 GeV.
Differential cross section for the W range 2.26 to 2.27 GeV.
Differential cross section for the W range 2.27 to 2.28 GeV.
Differential cross section for the W range 2.28 to 2.29 GeV.
Differential cross section for the W range 2.29 to 2.30 GeV.
Differential cross section for the W range 2.30 to 2.31 GeV.
Differential cross section for the W range 2.31 to 2.32 GeV.
Differential cross section for the W range 2.32 to 2.33 GeV.
Differential cross section for the W range 2.33 to 2.34 GeV.
Differential cross section for the W range 2.34 to 2.35 GeV.
Differential cross section for the W range 2.35 to 2.36 GeV.
Differential cross section for the W range 2.36 to 2.37 GeV.
Differential cross section for the W range 2.37 to 2.38 GeV.
Differential cross section for the W range 2.38 to 2.39 GeV.
Differential cross section for the W range 2.39 to 2.40 GeV.
Differential cross section for the W range 2.40 to 2.41 GeV.
Differential cross section for the W range 2.41 to 2.42 GeV.
Differential cross section for the W range 2.42 to 2.43 GeV.
Differential cross section for the W range 2.43 to 2.44 GeV.
Differential cross section for the W range 2.44 to 2.45 GeV.
Differential cross section for the W range 2.45 to 2.46 GeV.
Differential cross section for the W range 2.46 to 2.47 GeV.
Differential cross section for the W range 2.47 to 2.48 GeV.
Differential cross section for the W range 2.48 to 2.49 GeV.
Differential cross section for the W range 2.49 to 2.50 GeV.
Differential cross section for the W range 2.50 to 2.51 GeV.
Differential cross section for the W range 2.51 to 2.52 GeV.
Differential cross section for the W range 2.52 to 2.53 GeV.
Differential cross section for the W range 2.53 to 2.54 GeV.
Differential cross section for the W range 2.54 to 2.55 GeV.
Differential cross section for the W range 2.55 to 2.56 GeV.
Differential cross section for the W range 2.56 to 2.57 GeV.
Differential cross section for the W range 2.57 to 2.58 GeV.
Differential cross section for the W range 2.58 to 2.59 GeV.
Differential cross section for the W range 2.59 to 2.60 GeV.
Differential cross section for the W range 2.60 to 2.61 GeV.
Differential cross section for the W range 2.61 to 2.62 GeV.
Differential cross section for the W range 2.62 to 2.63 GeV.
Differential cross section for the W range 2.63 to 2.64 GeV.
Differential cross section for the W range 2.64 to 2.65 GeV.
Differential cross section for the W range 2.65 to 2.66 GeV.
Differential cross section for the W range 2.66 to 2.67 GeV.
Differential cross section for the W range 2.67 to 2.68 GeV.
Differential cross section for the W range 2.68 to 2.69 GeV.
Differential cross section for the W range 2.69 to 2.70 GeV.
Differential cross section for the W range 2.70 to 2.71 GeV.
Differential cross section for the W range 2.71 to 2.72 GeV.
Differential cross section for the W range 2.72 to 2.73 GeV.
Differential cross section for the W range 2.75 to 2.76 GeV.
Differential cross section for the W range 2.76 to 2.77 GeV.
Differential cross section for the W range 2.77 to 2.78 GeV.
Differential cross section for the W range 2.78 to 2.79 GeV.
Differential cross section for the W range 2.79 to 2.80 GeV.
Differential cross section for the W range 2.80 to 2.81 GeV.
Differential cross section for the W range 2.81 to 2.82 GeV.
Differential cross section for the W range 2.82 to 2.83 GeV.
Differential cross section for the W range 2.83 to 2.84 GeV.
Spin density matrix elements for the W range 1.72 to 1.73 GeV.
Spin density matrix elements for the W range 1.73 to 1.74 GeV.
Spin density matrix elements for the W range 1.74 to 1.75 GeV.
Spin density matrix elements for the W range 1.75 to 1.76 GeV.
Spin density matrix elements for the W range 1.76 to 1.77 GeV.
Spin density matrix elements for the W range 1.77 to 1.78 GeV.
Spin density matrix elements for the W range 1.78 to 1.79 GeV.
Spin density matrix elements for the W range 1.79 to 1.80 GeV.
Spin density matrix elements for the W range 1.80 to 1.81 GeV.
Spin density matrix elements for the W range 1.81 to 1.82 GeV.
Spin density matrix elements for the W range 1.82 to 1.83 GeV.
Spin density matrix elements for the W range 1.83 to 1.84 GeV.
Spin density matrix elements for the W range 1.84 to 1.85 GeV.
Spin density matrix elements for the W range 1.85 to 1.86 GeV.
Spin density matrix elements for the W range 1.86 to 1.87 GeV.
Spin density matrix elements for the W range 1.87 to 1.88 GeV.
Spin density matrix elements for the W range 1.88 to 1.89 GeV.
Spin density matrix elements for the W range 1.89 to 1.90 GeV.
Spin density matrix elements for the W range 1.90 to 1.91 GeV.
Spin density matrix elements for the W range 1.91 to 1.92 GeV.
Spin density matrix elements for the W range 1.92 to 1.93 GeV.
Spin density matrix elements for the W range 1.93 to 1.94 GeV.
Spin density matrix elements for the W range 1.94 to 1.95 GeV.
Spin density matrix elements for the W range 1.95 to 1.96 GeV.
Spin density matrix elements for the W range 1.96 to 1.97 GeV.
Spin density matrix elements for the W range 1.97 to 1.98 GeV.
Spin density matrix elements for the W range 1.98 to 1.99 GeV.
Spin density matrix elements for the W range 1.99 to 2.00 GeV.
Spin density matrix elements for the W range 2.00 to 2.01 GeV.
Spin density matrix elements for the W range 2.01 to 2.02 GeV.
Spin density matrix elements for the W range 2.02 to 2.03 GeV.
Spin density matrix elements for the W range 2.03 to 2.04 GeV.
Spin density matrix elements for the W range 2.04 to 2.05 GeV.
Spin density matrix elements for the W range 2.05 to 2.06 GeV.
Spin density matrix elements for the W range 2.06 to 2.07 GeV.
Spin density matrix elements for the W range 2.07 to 2.08 GeV.
Spin density matrix elements for the W range 2.08 to 2.09 GeV.
Spin density matrix elements for the W range 2.09 to 2.10 GeV.
Spin density matrix elements for the W range 2.10 to 2.11 GeV.
Spin density matrix elements for the W range 2.11 to 2.12 GeV.
Spin density matrix elements for the W range 2.12 to 2.13 GeV.
Spin density matrix elements for the W range 2.13 to 2.14 GeV.
Spin density matrix elements for the W range 2.14 to 2.15 GeV.
Spin density matrix elements for the W range 2.15 to 2.16 GeV.
Spin density matrix elements for the W range 2.16 to 2.17 GeV.
Spin density matrix elements for the W range 2.17 to 2.18 GeV.
Spin density matrix elements for the W range 2.18 to 2.19 GeV.
Spin density matrix elements for the W range 2.19 to 2.20 GeV.
Spin density matrix elements for the W range 2.20 to 2.21 GeV.
Spin density matrix elements for the W range 2.21 to 2.22 GeV.
Spin density matrix elements for the W range 2.22 to 2.23 GeV.
Spin density matrix elements for the W range 2.23 to 2.24 GeV.
Spin density matrix elements for the W range 2.24 to 2.25 GeV.
Spin density matrix elements for the W range 2.25 to 2.26 GeV.
Spin density matrix elements for the W range 2.26 to 2.27 GeV.
Spin density matrix elements for the W range 2.27 to 2.28 GeV.
Spin density matrix elements for the W range 2.28 to 2.29 GeV.
Spin density matrix elements for the W range 2.29 to 2.30 GeV.
Spin density matrix elements for the W range 2.30 to 2.31 GeV.
Spin density matrix elements for the W range 2.31 to 2.32 GeV.
Spin density matrix elements for the W range 2.32 to 2.33 GeV.
Spin density matrix elements for the W range 2.33 to 2.34 GeV.
Spin density matrix elements for the W range 2.34 to 2.35 GeV.
Spin density matrix elements for the W range 2.35 to 2.36 GeV.
Spin density matrix elements for the W range 2.36 to 2.37 GeV.
Spin density matrix elements for the W range 2.37 to 2.38 GeV.
Spin density matrix elements for the W range 2.38 to 2.39 GeV.
Spin density matrix elements for the W range 2.39 to 2.40 GeV.
Spin density matrix elements for the W range 2.40 to 2.41 GeV.
Spin density matrix elements for the W range 2.41 to 2.42 GeV.
Spin density matrix elements for the W range 2.42 to 2.43 GeV.
Spin density matrix elements for the W range 2.43 to 2.44 GeV.
Spin density matrix elements for the W range 2.44 to 2.45 GeV.
Spin density matrix elements for the W range 2.45 to 2.46 GeV.
Spin density matrix elements for the W range 2.46 to 2.47 GeV.
Spin density matrix elements for the W range 2.47 to 2.48 GeV.
Spin density matrix elements for the W range 2.48 to 2.49 GeV.
Spin density matrix elements for the W range 2.49 to 2.50 GeV.
Spin density matrix elements for the W range 2.50 to 2.51 GeV.
Spin density matrix elements for the W range 2.51 to 2.52 GeV.
Spin density matrix elements for the W range 2.52 to 2.53 GeV.
Spin density matrix elements for the W range 2.53 to 2.54 GeV.
Spin density matrix elements for the W range 2.54 to 2.55 GeV.
Spin density matrix elements for the W range 2.55 to 2.56 GeV.
Spin density matrix elements for the W range 2.56 to 2.57 GeV.
Spin density matrix elements for the W range 2.57 to 2.58 GeV.
Spin density matrix elements for the W range 2.58 to 2.59 GeV.
Spin density matrix elements for the W range 2.59 to 2.60 GeV.
Spin density matrix elements for the W range 2.60 to 2.61 GeV.
Spin density matrix elements for the W range 2.61 to 2.62 GeV.
Spin density matrix elements for the W range 2.62 to 2.63 GeV.
Spin density matrix elements for the W range 2.63 to 2.64 GeV.
Spin density matrix elements for the W range 2.64 to 2.65 GeV.
Spin density matrix elements for the W range 2.65 to 2.66 GeV.
Spin density matrix elements for the W range 2.66 to 2.67 GeV.
Spin density matrix elements for the W range 2.67 to 2.68 GeV.
Spin density matrix elements for the W range 2.68 to 2.69 GeV.
Spin density matrix elements for the W range 2.69 to 2.70 GeV.
Spin density matrix elements for the W range 2.70 to 2.71 GeV.
Spin density matrix elements for the W range 2.71 to 2.72 GeV.
Spin density matrix elements for the W range 2.72 to 2.73 GeV.
Spin density matrix elements for the W range 2.73 to 2.74 GeV.
Spin density matrix elements for the W range 2.74 to 2.75 GeV.
Spin density matrix elements for the W range 2.75 to 2.76 GeV.
Spin density matrix elements for the W range 2.76 to 2.77 GeV.
Spin density matrix elements for the W range 2.77 to 2.78 GeV.
Spin density matrix elements for the W range 2.78 to 2.79 GeV.
Spin density matrix elements for the W range 2.79 to 2.80 GeV.
Spin density matrix elements for the W range 2.80 to 2.81 GeV.
Spin density matrix elements for the W range 2.81 to 2.82 GeV.
Spin density matrix elements for the W range 2.82 to 2.83 GeV.
Spin density matrix elements for the W range 2.83 to 2.84 GeV.
The exclusive reaction $\gamma p \to p \pi^+ \pi^-$ was studied in the photon energy range 3.0 - 3.8 GeV and momentum transfer range $0.4<-t<1.0$ GeV$^2$. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was about 20 pb$^{-1}$. The reaction was isolated by detecting the $\pi^+$ and proton in CLAS, and reconstructing the $\pi^-$ via the missing-mass technique. Moments of the di-pion decay angular distributions were derived from the experimental data. Differential cross sections for the $S$, $P$, and $D$-waves in the $M_{\pi^+\pi^-}$ mass range $0.4-1.4$ GeV were derived performing a partial wave expansion of the extracted moments. Besides the dominant contribution of the $\rho(770)$ meson in the $P$-wave, evidence for the $f_0(980)$ and the $f_2(1270)$ mesons was found in the $S$ and $D$-waves, respectively. The differential production cross sections $d\sigma/dt$ for individual waves in the mass range of the above-mentioned mesons were extracted. This is the first time the $f_0(980)$ has been measured in a photoproduction experiment.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
S wave cross section for -T.
S wave cross section for -T.
S wave cross section for -T.
S wave cross section for -T.
S wave cross section for -T.
S wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
D0 wave cross section for -T.
D0 wave cross section for -T.
F wave cross section for -T.
F0 wave cross section for -T.
F0 wave cross section for -T.
Fp wave cross section for -T.
Fp wave cross section for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
The differential cross section for the process $\gamma \gamma \to \eta \pi^0$ has been measured in the kinematic range $0.84 \GeV < W < 4.0 \GeV$, $|\cos \theta^*|<0.8$, where $W$ and $\theta^*$ are the energy and $\pi^0$ (or $\eta$) scattering angle, respectively, in the $\gamma\gamma$ center-of-mass system. The results are based on a 223 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+ e^-$ collider. Clear peaks due to the $a_0(980)$ and $a_2(1320)$ are visible. The differential cross sections are fitted in the energy region $0.9 \GeV < W < 1.46 \GeV$ to obtain the parameters of the $a_0(980)$. Its mass, width and $\Gamma_{\gamma \gamma} \B (\eta \pi^0)$ are measured to be $982.3 ^{+0.6}_{-0.7} ^{+3.1}_{-4.7} \MeV/c^2$, $75.6 \pm 1.6 ^{+17.4}_{-10.0} \MeV$ and $128 ^{+3}_{-2} ^{+502}_{-43} \eV$, respectively. The energy and angular dependences above 3.1 GeV are compared with those measured in the $\pi^0 \pi^0$ channel. The integrated cross section over $|\cos \theta^*|<0.8$ has a $W^{-n}$ dependence with $n = 10.5 \pm 1.2 \pm 0.5$, which is slightly larger than that for $\pi^0 \pi^0$. The differential cross sections show a $\sin^{-4} \theta^*$ dependence similar to $\gamma \gamma \to \pi^0 \pi^0$. The measured cross section ratio, $\sigma(\eta \pi^0)/\sigma(\pi^0 \pi^0) = 0.48 \pm 0.05 \pm 0.04$, is consistent with a QCD-based prediction.
The total cross section integrated over ABS(COS(THETA*)) < 0.8.
The differential cross section as a function of angle for W = 0.85 GeV.
The differential cross section as a function of angle for W = 0.87 GeV.
The differential cross section as a function of angle for W = 0.89 GeV.
The differential cross section as a function of angle for W = 0.91 GeV.
The differential cross section as a function of angle for W = 0.93 GeV.
The differential cross section as a function of angle for W = 0.95 GeV.
The differential cross section as a function of angle for W = 0.97 GeV.
The differential cross section as a function of angle for W = 0.99 GeV.
The differential cross section as a function of angle for W = 1.01 GeV.
The differential cross section as a function of angle for W = 1.03 GeV.
The differential cross section as a function of angle for W = 1.05 GeV.
The differential cross section as a function of angle for W = 1.07 GeV.
The differential cross section as a function of angle for W = 1.09 GeV.
The differential cross section as a function of angle for W = 1.11 GeV.
The differential cross section as a function of angle for W = 1.13 GeV.
The differential cross section as a function of angle for W = 1.15 GeV.
The differential cross section as a function of angle for W = 1.17 GeV.
The differential cross section as a function of angle for W = 1.19 GeV.
The differential cross section as a function of angle for W = 1.21 GeV.
The differential cross section as a function of angle for W = 1.23 GeV.
The differential cross section as a function of angle for W = 1.25 GeV.
The differential cross section as a function of angle for W = 1.27 GeV.
The differential cross section as a function of angle for W = 1.29 GeV.
The differential cross section as a function of angle for W = 1.31 GeV.
The differential cross section as a function of angle for W = 1.33 GeV.
The differential cross section as a function of angle for W = 1.35 GeV.
The differential cross section as a function of angle for W = 1.37 GeV.
The differential cross section as a function of angle for W = 1.39 GeV.
The differential cross section as a function of angle for W = 1.41 GeV.
The differential cross section as a function of angle for W = 1.43 GeV.
The differential cross section as a function of angle for W = 1.45 GeV.
The differential cross section as a function of angle for W = 1.47 GeV.
The differential cross section as a function of angle for W = 1.49 GeV.
The differential cross section as a function of angle for W = 1.51 GeV.
The differential cross section as a function of angle for W = 1.53 GeV.
The differential cross section as a function of angle for W = 1.55 GeV.
The differential cross section as a function of angle for W = 1.57 GeV.
The differential cross section as a function of angle for W = 1.59 GeV.
The differential cross section as a function of angle for W = 1.62 GeV.
The differential cross section as a function of angle for W = 1.66 GeV.
The differential cross section as a function of angle for W = 1.70 GeV.
The differential cross section as a function of angle for W = 1.74 GeV.
The differential cross section as a function of angle for W = 1.78 GeV.
The differential cross section as a function of angle for W = 1.82 GeV.
The differential cross section as a function of angle for W = 1.86 GeV.
The differential cross section as a function of angle for W = 1.90 GeV.
The differential cross section as a function of angle for W = 1.94 GeV.
The differential cross section as a function of angle for W = 1.98 GeV.
The differential cross section as a function of angle for W = 2.02 GeV.
The differential cross section as a function of angle for W = 2.06 GeV.
The differential cross section as a function of angle for W = 2.10 GeV.
The differential cross section as a function of angle for W = 2.14 GeV.
The differential cross section as a function of angle for W = 2.18 GeV.
The differential cross section as a function of angle for W = 2.22 GeV.
The differential cross section as a function of angle for W = 2.26 GeV.
The differential cross section as a function of angle for W = 2.30 GeV.
The differential cross section as a function of angle for W = 2.34 GeV.
The differential cross section as a function of angle for W = 2.38 GeV.
The differential cross section as a function of angle for W = 2.45 GeV.
The differential cross section as a function of angle for W = 2.55 GeV.
The differential cross section as a function of angle for W = 2.65 GeV.
The differential cross section as a function of angle for W = 2.75 GeV.
The differential cross section as a function of angle for W = 2.85 GeV.
The differential cross section as a function of angle for W = 2.95 GeV.
The differential cross section as a function of angle for W = 3.05 GeV.
The differential cross section as a function of angle for W = 3.15 GeV.
The differential cross section as a function of angle for W = 3.25 GeV.
The differential cross section as a function of angle for W = 3.35 GeV.
The differential cross section as a function of angle for W = 3.45 GeV.
The differential cross section as a function of angle for W = 3.55 GeV.
The differential cross section as a function of angle for W = 3.65 GeV.
The differential cross section as a function of angle for W = 3.75 GeV.
The differential cross section as a function of angle for W = 3.85 GeV.
The differential cross section as a function of angle for W = 3.95 GeV.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.