Measurements are reported of the differential cross section for the reaction π−p→π−p,π0n,andηn at three angles close to 180° and for incident momenta in the range 0.6 to 1.0 GeV/c. The three measurements were made simultaneously at 1% intervals of beam momentum. The data on elastic scattering resolve a discrepancy between two earlier experiments. They also show clearly the effect of the opening of the ηn channel. The charge-exchange data show that I-spin bounds are not violated in the kinematic region covered. The ηn data can be adequately described with known s-channel resonances. No evidence for narrow N*'s is seen in any channel.
No description provided.
No description provided.
We report on partial results of the analysis of a p̄p backward elastic scattering experiment, between 175 and 750 MeV/ c . Various evidences are given of the resonant nature of a backward peak at the S-meson mass. Analysis leads to J PC =4 ++ , firmly connected to other experimental data with I G =1 − . All results agree for an assignment to the A 2 trajectory.
No description provided.
No description provided.
No description provided.
The backward angular distributions obtained in an experiment at the Zero Gradient Synchrotron of Argonne National Laboratory were used to systematically study the energy dependence of the 180° differential cross section for π+p elastic scattering in the center-of-mass energy region from 2159 to 3487 MeV. At each of 38 incident pion momenta between 2.0 and 6.0 GeV/c, a focusing spectrometer and scintillation counter hodoscopes were used to obtain differential cross sections for typically five pion scattering angles from 141° to 173° in the laboratory. Values for dσdΩ at 180° were then obtained by extrapolation. A resonance model and an interference model were used to perform fits to the energy dependence of dσdΩ (180°). Both models led to good fits to our data and yielded values for the masses, widths, parities, and the product of spin and elasticity for the Δ(2200), Δ(2420), Δ(2850), and Δ(3230) resonances. Our data confirm the existence of the Δ(3230) and require the negative-parity Δ(2200).
No description provided.
No description provided.
No description provided.
Targets made of C, Al, Cu, Pb, and U were exposed to π+, π−, and proton beams of 9.92 and 19.85 GeV/c (for p-Pb only) at the Brookhaven AGS. A magnetic spectrometer with spark chambers was used to detect elastically scattered particles in the Coulomb-nuclear interference region (5-35 mrad). Differential cross sections are presented and compared with an optical model, taking full account of multiple scattering in the target.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
n−p elastic differential cross sections in the charge-exchange region have been measured for incident neutron momenta between 600 and 2000 MeV/c. The momentum of neutrons incident on a liquid-H2 target was determined by a measurement of flight time over a 32.9-m flight path. The momentum and scattering angles of the recoil proton were measured by a wire-spark-chamber magnetic spectrometer. Approximately 450 000 elastic events were detected for proton laboratory angles between 0° and 62°. Differential cross sections are presented at 16 energies. An absolute normalization of the cross sections was achieved by measuring the incident neutron flux with a detector whose efficiency was determined experimentally.
No description provided.
No description provided.
No description provided.
The differential cross section for π ± p elastic scattering below 2 GeV/ c has been measured at small forward pion angles by an electronics experiment. The interference effects observed between the Coulomb and the nuclear interaction have been used to determine the magnitude and sign of the real parts of the π ± p forward scattering amplitude. The latter are compared to the values predicted by the dispersion relations.
.
.
.
Channel cross sections, elastic differential cross sections and single pion production mass spectra and angular distributions are presented for π − p interactions, based on 139 000 events observed at six energies in the center of mass region 1.50–1.74 GeV.
No description provided.
No description provided.
No description provided.
The π − p→n γ and π − p→n π ° differential cross sections have been measured for −0.9< cos θ ∗ <−0.45 (θ ∗ c.m. scattering angle) at 475 MeV/ c and 550 MeV/ c incident momenta. The π − p→n γ measurement is a good check of the detailed balance principle in the electromagnetic interactions of hadrons at these energies and is in good agreement with Walker's analysis. On the other hand the π − p→ π °n extrapolated values of 180° allows one to verify that the phases of the A 1 2 and A 3 2 amplitudes are equal.
No description provided.
No description provided.
BACKWARD CROSS SECTION ESTIMATED BY LEGENDRE POLYNOMIAL FIT.
Experimental results are presented for the available channels in the 1.2 GeV/ c π + p interaction. An isobaric model with incoherent addition of the amplitudes is used to determine the π, Δ and N ∗ abundance rates in the π + π o p final state. The multipole parameters in the density matrix of the Δ ++ are determined as functions of its production angle.
No description provided.
LEGENDRE POLYNOMIAL FIT USED TO CORRECT FOR ELASTIC EVENTS LOST FROM THE FORWARD BIN.
No description provided.
21 differential cross section measurements of the np → pn charge-exchange reaction have been carried out at the synchrotron Saturne (Saclay), for incident neutron momenta between 1 and 2 GeV/ c and in the squared four-momentum transfer range 0 ⩽ −t ⩽ 0.4 (GeV/ c ) 2 . The π exchange peak is seen at all the incident momenta. The s dependence of the very forward slope of this peak shows weak structures near the threshold of inelastic channels.
No description provided.
No description provided.
No description provided.