We have measured the e + e − → ø reaction by its K + K − decay mode. Using our previous results on K O K O and the 3π decay mode of the ø mesons, we compute Γ ø → e + e − and then compare the whole Orsay results to theoretical predictions.
FITTED CROSS SECTIONS AT PHI PEAK. ONLY PHI --> K+ K- MEASURED HERE - ANALYSIS USES PREVIOUS EXPERIMENTS FOR OTHER CHANNELS: J.E. AUGUSTIN ET AL., PL 28B, 517 (1969).
EXCITATION OF K+ K- CHANNEL MEASURED AROUND PHI RESONANCE AT 13 ENERGIES.
We have measured differential cross sections of γ + p → p + η 0 at several energies. The angular distributions show that S 11 production is predominant in the energy range investigated and that the other resonant terms seen in π-production of η are absent or very low. Finally, experimental data are theoretically interpreted and the S 11 parameters deduced.
No description provided.
No description provided.
No description provided.
π ° photoproduction cross sections on proton have been measured at π° c.m. angles between 115° and 180° and between 700 MeV and 1150 MeV photon energies by detecting only the recoil proton. Our results show clearly a peak at 135° around 1000 MeV energies as predicted by Walker's partial wave analysis.
No description provided.
No description provided.
No description provided.
The differential cross section for the reaction γ+p→π+n was measured at 19 photon energies between 300 and 750 MeV in the laboratory frame, for pion angles between 0° and 130° in the c.m. system. The pions were analyzed in angle and momentum with a magnetic spectrometer and detected by a counter telescope. The 0° measurements could be achieved, in spite of the excessive positron rate, owing to a mass-spectrometer arrangement. No direct indication for the electromagnetic excitation of the P11 resonance (1466 MeV) was found. Comparison is made with theoretical calculations of π+ photoproduction.
No description provided.
No description provided.
No description provided.
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Fiducial phase-space cross-section at particle level.
$p_{T}^{t}$ absolute differential cross-section at particle level.
$|y^{t}|$ absolute differential cross-section at particle level.
We present complete results concerning the five reactions K − p → Λω , K − p → Λφ , K − p → Σ 0 ϱ and K − p → Σ 0 φ . The experimental data are well described by exchange mechanisms and the agreement with the SU(3) symmetry predictions is excellent.
FORWARD AND BACKWARD CROSS SECTIONS ARE FOR COS(THETA) > AND < 0. SLOPE DETERMINED FOR -TP = 0.2 TO 1.0.
AUTHORS ALSO GIVE CORRELATIONS OF LAMBDA POLARIZATION WITH THE MESON POLARIZATION.
No description provided.
Final states π − Σ + , π + Σ − , π o Λ and ηΛ were studied for K − p reactions at 3.95 GeV/ c . Cross sections, angular distributions and polarizations are presented. Data for π − Σ + and π o Λ production are compared to the line-reversed πp reactions at the same beam momentum. Baryon-exchange peaks are presented for the Σ + π − , Σ − π + and Λπ o final states.
No description provided.
No description provided.
No description provided.
Differential cross sections and density matrix elements are presented for K ∗− (890) and K ∗− (1400) produced in the reaction K − p→K O π − p at 3.95 GeV/ c . The cross sections are decomposed into contributions due to different exchange mechanisms.
No description provided.
No description provided.
No description provided.
High-energy nuclear collisions create an energy density similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high energy accelerator of heavy nuclei is an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ($^4\bar{He}$), also known as the anti-{\alpha} ($\bar{\alpha}$), consists of two antiprotons and two antineutrons (baryon number B=-4). It has not been observed previously, although the {\alpha} particle was identified a century ago by Rutherford and is present in cosmic radiation at the 10% level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by about 1000 with each additional antinucleon. We present the observation of the antimatter helium-4 nucleus, the heaviest observed antinucleus. In total 18 $^4\bar{He}$ counts were detected at the STAR experiment at RHIC in 10$^9$ recorded Au+Au collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, which has implications beyond nuclear physics.
Differential invariant yields of (anti)baryons evaluated at pT/B =0.875 GeV/c, in central 200 GeV Au+Au collisions.
We report on a measurement of the cross section for direct-photon production in association with a heavy quark using the full data set of $\sqrt{s}=1.96$ TeV proton-antiproton collisions corresponding to 9.1 fb$^{-1}$ of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron. The measurements are performed as a function of the photon transverse momentum, covering photon transverse momentum between 30 and 300 GeV, photon rapidities $|y^{\gamma}|<1.0$, heavy-quark-jet transverse momentum $p_{T}^{jet}>20$ GeV, and jet rapidities $|y^{jet}|<1.5$. The results are compared with several theoretical predictions.
The cross section for GAMMA BQUARK X production as a function of the transverse energy of the GAMMA.
The cross section for GAMMA CQUARK X production as a function of the transverse energy of the GAMMA.