The reaction K + p → K ∗o (892) Δ ++ (1236) has been studied at 3 GeV/ c in both a hydrogen and a deuterium bubble chamber experiment. The production mechanism is described by a Regge-type model using π- and B-exchange. The joint decay distributions are analysed in various frames and compared with quark-model predictions.
No description provided.
No description provided.
No description provided.
Experimental results are presented on $\pi^+ p$ interactions at 850 MeV/c incident momentum. Cross sections for the various reactions are given. The elastic differential cross section has been fitted to a polynomial in, cos$\theta$ and the resulting coefficients are compared to results at neighbouring incident momenta. For the one-pion-production reactions, the (N$\pi$) effective mass distributions and the ratio of $\pi^0$ to $\pi^+$ production have been compared to the predictions of several theoretical models.
No description provided.
As a partial result of an analysis of K + d interactions at 3 GeV/ c produced in the 81 cm Saclay bubble chamber, we present data on K + differential cross sections for the following reactions: K + d → K + d, K + d → K + pn, K + d → K 0 pp . A set of parameters describing the K + n elastic scattering has been obtained from a simulataneous fit, based on the Glauber model. to the three experimental differential cross sections and to the K + d total cross section, giving α n = 1.7 ± 0.5 GeV −2 for the slope α n of the differential cross section, and ρ n = −0.16 ± 0.3 for the ratio of the real to the imaginary part of the forward scattering amplitude. The D-wave function of the deuteron has been found to give a non-negligible contribution to the coherent reaction.
No description provided.
No description provided.
No description provided.
About 100 000 pictures, with an average of ∼12K + per picture, taken in the 81 cm Saclay deuterium bubble chamber exposed to a separated 3 GeV/c K + beam have been analysed for the reaction K + d→K 0 pp in the 1-prong V 0 and 2-prong V 0 topologies. 214 such events have been found allowing a determination of the differential cross-section. A comparison with the prediction of Rarita and Schwarzschild yields reasonable agreement; in particular a large real part is inferred for the amplitude for the reaction K + n→K 0 p.
The errors are statistical only.
The errors are statistical only. To evaluate the cross section on neutron thE data are divided on (1-FORMFACTOR(C=DEUT). For definition of the formfactor see L. Durand, Phys. Rev. 115 (1959) 1020.
We present an angular analysis of the $B^{+}\rightarrow K^{\ast+}(\rightarrow K_{S}^{0}\pi^{+})\mu^{+}\mu^{-}$ decay using 9$\,\mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}\rightarrow K^{\ast0}\mu^{+}\mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.
Results for the CP-averaged observables Fl, Afb and S3–S9. The first uncertainties are statistical and the second systematic.
Results for the optimised observables FL and P1–P'8. The first uncertainties are statistical and the second systematic.
The CP-averaged observable Fl versus q2. The first (second) error bars represent the statistical (total) uncertainties.
An angular analysis of the $B^{0}\rightarrow K^{*0}(\rightarrow K^{+}\pi^{-})\mu^{+}\mu^{-}$ decay is presented. The dataset corresponds to an integrated luminosity of $3.0\,{\mbox{fb}^{-1}}$ of $pp$ collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine $C\!P$-averaged observables and $C\!P$ asymmetries, taking account of possible contamination from decays with the $K^{+}\pi^{-}$ system in an S-wave configuration. The angular observables and their correlations are reported in bins of $q^2$, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for $q^2$-dependent decay amplitudes in the region $1.1
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit.
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
CP-asymmetric angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
The differential branching fraction with respect to the dimuon invariant mass squared, and the $C\!P$ asymmetry of the $B^\pm\to\pi^\pm\mu^+\mu^-$ decay are measured for the first time. The CKM matrix elements $|V_{td}|$ and $|V_{ts}|$, and the ratio $|V_{td}/V_{ts}|$ are determined. The analysis is performed using proton-proton collision data corresponding to an integrated luminosity of 3.0 fb$^{-1}$, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The total branching fraction and $C\!P$ asymmetry of $B^\pm\to\pi^\pm\mu^+\mu^-$ decays are measured to be \begin{eqnarray} \mathcal{B}(B^\pm\to\pi^\pm\mu^+\mu^-) &=& (1.83 \pm 0.24 \pm 0.05) \times 10^{-8}\,\,\,\mathrm{and} \nonumber\\ \mathcal{A}_{C\!P}(B^\pm\to\pi^\pm\mu^+\mu^-) &=& -0.11 \pm 0.12 \pm 0.01\,, \nonumber \end{eqnarray} where the first uncertainties are statistical and the second are systematic. These are the most precise measurements of these observables to date, and they are compatible with the predictions of the Standard Model.
The results for the differential branching fraction for $B^+ \rightarrow \pi^+\mu^+\mu^-$ in bins of $q^2$.
The measurement of charged-particle event shape variables is presented in inclusive inelastic pp collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the LHC. The observables studied are the transverse thrust, thrust minor and transverse sphericity, each defined using the final-state charged particles' momentum components perpendicular to the beam direction. Events with at least six charged particles are selected by a minimum-bias trigger. In addition to the differential distributions, the evolution of each event shape variable as a function of the leading charged particle transverse momentum, charged particle multiplicity and summed transverse momentum is presented. Predictions from several Monte Carlo models show significant deviations from data.
Normalized distributions of Tranverse Thrust for 4 ranges of leading particle PT.
Normalized distributions of Tranverse Thrust for 5 lower limit values of leading particle PT.
Normalized distributions of Tranverse Thrust Minor for 4 ranges of leading particle PT.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.